IMAGE PROCESSING Ferda Ernawan, Ph.D

Slides:



Advertisements
Presentasi serupa
Outline Materi Hubungan antara Comp. Vision, Grafika Komputer, Pengolahan Citra, dan Pengenalan Pola (Pattern Recognition) Domain Computer Vision Processing.
Advertisements

PENGOLAHAN CITRA DIGITAL : Operasi Aritmatik dan Geometri pada Citra
Pengolahan Citra Digital Kuliah Kedua
TEKS, GAMBAR DAN GRAFIK.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 1 Slide 1 REVIEW PERTEMUAN 3 Static Visual.
I. Introduction.
© aSup-2007 PENGENALAN SPSS   1 INTRODUCTION to SPSS Statistical Package for Social Science.
Praktikum PTI Sekolah Tinggi Ilmu Statistik Oleh : SIS - BPS Pengolahan Citra.
Praktikum PTI Sekolah Tinggi Ilmu Statistik Oleh : SIS - BPS
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
Overview Materi Pengolahan Citra Digital
Pengolah Citra Digital 2
1 DATA STRUCTURE “ STACK” SHINTA P STMIK MDP APRIL 2011.
Edge Detection (Pendeteksian Tepi)
1 Diselesaikan Oleh KOMPUTER Langkah-langkah harus tersusun secara LOGIS dan Efisien agar dapat menyelesaikan tugas dengan benar dan efisien. ALGORITMA.
Pengolahan Citra Pertemuan 14.
METHOD, ARRAY DAN STRING
Fuzzy for Image Processing
Image Raden Budiarto.
Pertemuan <<1>> Pengantar tentang database(01)
IMAGE ENHANCEMENT (PERBAIKAN CITRA)
Asas Photoshop CS4. Understand basic term and option in Photoshop CS4.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
D10K-6C01 Pengolahan Citra PCD-ML Pengolahan Citra Menggunakan MATLAB
Dasar Pengolahan Video Digital
Modul 1 PENGANTAR PENGOLAHAN CITRA
Pengenalan Dasar Citra
HTML BASIC (Contd…..) PERTEMUAN KEDUA.
DASAR DESAIN GRAFIS.
pengolahan citra References:
Kompresi Citra.
Citra Digital.
MODUL KULIAH 2 FORMASI CITRA
Pertemuan-2: Sejarah DIP & Permasalahannya
Image Segmentation.
Membangun Web Site“Cantik”
Operasi Matematis Pada Citra
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
Pertemuan 06 Fungsi Analisis pada SIG
Fungsi Analisis pada SIG
Terminology The terminology between original image and image compression Compression Ratio Bit per pixel.
EDY WINARNO fti-unisbank-smg 31 maret 2009
Digital Image Fundamentals
The contents This lectures we will look at image enhancement techniques working in the spatial domain: What is image enhancement? Different kinds of image.
Pengolahan Citra Digital
Color Image Processing
PENGANTAR PENGOLAHAN CITRA
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
Signal Processing Image Processing Audio Processing Video Processing
Pengolahan Citra Digital
Pengantar PENGOLAHAN CITRA DIGITAL
Kualitas Citra Pertemuan 1
Key Stages in Digital Image Processing
Image Enhancement –Spatial Filtering
Pengantar Design Grafis
Filtering dan Konvolusi
Pertemuan 17 Aplication Domain
Pengolahan Citra Digital Materi 2
Computer Vision Materi 2
JENIS-JENIS PROGRAM PEMBUAT GRAFIS
Signal Processing Image Processing Audio Processing Video Processing
Image Segmentation.
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
KOMPRESI CITRA.
KONVOLUSI DAN TRANSFORMASI FOURIER
PERTEMUAN KE-1 Sumber :Prof. Sinisa Todorovic
CITRA.
PENGENALAN CITRA DIGITAL
Format citra Oleh : Kustanto 11/10/2018.
Pemrosesan Bukan Teks (Citra)
Transcript presentasi:

IMAGE PROCESSING Ferda Ernawan, Ph.D Postgraduate Program of Dian Nuswantoro University Email: ferda.ernawan@yahoo.com

Administrative Course Implementation Lecture: 2 hrs per week for 10 weeks (Total=20 hrs) Course Evaluation: Course Works Marks Assignments 1 (Critique a conference article) 20% Case Study Research Proposal (5 pages) 30% Examination Final Examination Total 100%

Lecture 1 Introduction

References “Digital Image Processing”, Rafael C. Gonzalez & Richard E. Woods, Addison-Wesley, 2002 Bahan materi yang di ambil dari buku tersebut

Contents Sub pokok pembahasan meliputi: Pengertian digital image? Pengertian digital image processing? Contoh digital image processing dalam kehidupan sehari-hari Aspect of Image Processing Fundamental step in digital image processing Matlab as a research tools for image processing and applications Characteristic of a good paper in term of image processing and applications Penjelasan assignment 1

Pengertian Digital Image Sebuah gambar digital adalah representasi dari gambar dua dimensi  sebagai himpunan terhingga dari nilai digital, atau biasa disebut elemen gambar atau pixel.

Digital Image Nilai sebuah pixel biasanya merupakan tingkat abu-abu, warna, tingkat kecerahan atau kekeruhan, dll. Digitalisasi sebuah image adalah menggambarkan sebuah kejadian nyata. 1 pixel

Digital Image Nilai suatu pixel merupakan single number dari suatu intensitas gambar atau warna gambar. Digital Image merupakan multidimensional array dari intensitas gambar atau warna gambar.

Digital Image 1 sample per point (Black & White or Grayscale) 3 samples per point (Red, Green, and Blue) 4 samples per point (Red, Green, Blue, and “Alpha”)

Image Format GIF (Graphic Interchange Format) PNG (Portable Network Graphics) JPEG (Joint Photographic Experts Group) TIFF (Tagged Image File Format) PGM (Portable Gray Map) FITS (Flexible Image Transport System) BMP (Bitmap)

Digital Image Processing Digital Image Processing fokus pada dua tugas utama: Peningkatan informasi gambar untuk interpretasi manusia Pengolahan data image untuk penyimpanan, transmisi, dan  representasi untuk autonomous machine perception.

Digital Image Processing Penggunaan teknik pengolahan citra digital telah meningkat dan image processing application sekarang telah digunakan untuk semua jenis pekerjaan pada semua jenis bidang, misalnya: Image enhancement dan restoration Artistic effects Medical visualisation Industrial inspection Law enforcement Human computer interfaces

Contoh Image Enhancement Salah satu penggunaan yang paling umum dari teknik Digital Image Processing yaitu meningkatkan kualitas, remove noise, dan sebagainya.

Contoh Image Restoration Image yang terdegradasi The result of image restoration

Contoh Efek Artistik Efek Artistik digunakan untuk membuat gambar lebih menarik dan untuk menambahkan suatu efek khusus.

Original Image of a Heart Contoh: Medicine Ambil irisan dari scan hati, dan menentukan batas batas antara jenis jaringan Gambar dengan abu-abu mewakili tingkat kepadatan jaringan. Gunakan filter yang cocok untuk menyorot tepi. Original Image of a Heart Edge Detection Image

Contoh Industrial Inspection Manusia sebagai operator memerlukan biaya mahal. Mesin dapat melakukan pekerjaan lebih cepat, dan sistem industri seperti itu sudah digunakan dalam semua jenis industri.

Contoh Law enforcement Teknik pemrosesan gambar digunakan secara luas oleh penegak hukum Monitoring nomor pelat mobil dalam memonitor kecepatan / sistem tol otomatis Pengenalan sidik jari Peningkatan CCTV gambar

Contoh GIS Sistem Informasi Geografis Digital image processing digunakan secara ekstensif untuk memanipulasi citra satelit.

Fundamental step in digital image processing Color image processing Wavelets and multi resolution processing Image Compression Morphological Processing Segmentation Image Restoration Knowledge base Representation & Description Image Enhancement Object Recognition Image Acquisition Problem Domain

Fundamental step in digital image processing Color image processing Wavelets and multi resolution processing Image Compression Morphological Processing Segmentation Image Restoration Representation & Description Image Enhancement Object Recognition Image Acquisition Problem Domain

Fundamental step in digital image processing Color image processing Wavelets and multi resolution processing Image Compression Morphological Processing Segmentation Image Restoration Representation & Description Image Enhancement Object Recognition Image Acquisition Problem Domain

Fundamental step in digital image processing Color image processing Wavelets and multi resolution processing Image Compression Morphological Processing Segmentation Image Restoration Representation & Description Image Enhancement Object Recognition Image Acquisition Problem Domain

Fundamental step in digital image processing Colour image processing Wavelets and multi resolution processing Image Compression Morphological Processing Segmentation Image Restoration Representation & Description Image Enhancement Object Recognition Image Acquisition Problem Domain

Fundamental step in digital image processing Color image processing Wavelets and multi resolution processing Image Compression Morphological Processing Segmentation Image Restoration Representation & Description Image Enhancement Object Recognition Image Acquisition Problem Domain

Fundamental step in digital image processing Color image processing Wavelets and multi resolution processing Image Compression Morphological Processing Segmentation Image Restoration Representation & Description Image Enhancement Object Recognition Image Acquisition Problem Domain

Fundamental step in digital image processing Color image processing Wavelets and multi resolution processing Image Compression Morphological Processing Segmentation Image Restoration Representation & Description Image Enhancement Object Recognition Image Acquisition Problem Domain

Fundamental step in digital image processing Color image processing Wavelets and multi resolution processing Image Compression Morphological Processing Segmentation Image Restoration Representation & Description Image Enhancement Object Recognition Image Acquisition Problem Domain

Fundamental step in digital image processing Color image processing Wavelets and multi resolution processing Image Compression Morphological Processing Segmentation Image Restoration Representation & Description Image Enhancement Object Recognition Image Acquisition Problem Domain

MATLAB as research tool for Image Processing and Application

Matlab The basic data structure in Matlab is the array, and the operation is sequence, like C programming. Matlab stores image as two dimensional array (matrices), each element of the matrix represents a single pixel in the displayed image. By default, Matlab stores the data in array of class double.

What is Image Processing Toolbox? Image processing toolbox is collection of function of Matlab numeric computing environment. toolbox functions implement specialized image processing algorithm.

Image Processing Toolbox Geometric operations Neighborhood and block operation Linier filtering and filter design Transformation domain Image analysis and enhancement Binary image operations Region of interest operation.

Image Type in the toolbox The Image Processing toolbox supports basic type of image, for example: Indexed images Binary images RGB images

RGB Image In Matlab , the red, green, and blue component of RGB image reside in single m-by-n-by-3 array. m and n are the number of rows and columns of pixels in the image, and the third dimension consists of red, green, and blue intensity values. Each pixel in the image, the red, green, and blue elements are combine to create the pixel’s actual color.

RGB Image An RGB array can be: Class double, in this case it contains values in the range [0,1] Class uint8, in this case the data range is [0,255]

What should you do with image data? Reading in image data from files, and writing image data out to file. Converting images to other image types. Working with uint8 arrays in Matlab and the Image Processing toolbox.

Reading images You can use the Matlab function to read image data from files. Imread(‘filename’) Imread function can read these graphics file formats: TIFF (Tagged Image File Format) JPEG (Join Photographics Expert’s Group) HDF (Hierarchical Data Format) BMP (Windows Bitmap) XWD (X-Window Dump)

Writing Images To write image data from Matlab to a file, you can use imwrite function. Imwrite can write the same file formats that imread reads. See the references entire for imread and imwrite for more information about these function. In addition, you can use imfinfo function to return information about the image data in a file.

Converting Image Function Purpose dither Binary from grayscale indexed from RGB Gray2ind Indexed from grayscale grayslice Indexed from grayscale by thresholding Im2bw Binary from intensity, indexed or RGB image by luminance threshold. Ind2gray Indexed to grayscale

Converting Image Ind2rgb Indexed to RGB Mat2gray Create a grayscale intensity image from data in a matrix, Rgb2gray RGB to intensity Rgb2ind RGB to indexed