REGRESI DAN KORELASI Pada bab ini akan membahas dua bagian yang saling berhubungan, khususnya dua kejadian yang dapat diukur secara matematis. Dalam hal.

Slides:



Advertisements
Presentasi serupa
BAB 7 Regresi dan Korelasi
Advertisements

REGRESI NON LINIER (TREND)
REGRESI DAN KORELASI SEDERHANA
BAB II ANALISA DATA.
ANALISIS REGRESI DAN KORELASI
ANALISIS KORELASI DAN REGRESI LINEAR SEDERHANA
REGRESI LINEAR SEDERHANA
REGRESI DAN KORELASI Pada bab ini akan membahas dua bagian yang saling berhubungan, khususnya dua kejadian yang dapat diukur secara matematis. Dalam hal.
REGRESI LINEAR Oleh: Septi Ariadi
Bab 10 Analisis Regresi dan Korelasi
ANALISIS REGRESI Pertemuan ke 12.
REGRESI LINEAR BERGANDA DAN REGRESI (TREND) NONLINEAR
KORELASI DAN REGRESI LINEAR SEDERHANA
BAB VI REGRESI SEDERHANA.
Bab 3B Statistika Deskriptif: Parameter Populasi 2.
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
Abdul Rohman Fakultas Farmasi UGM
ANALISIS EKSPLORASI DATA
Probabilitas dan Statistika
REGRESI LINEAR SEDERHANA
ANALISIS REGRESI DAN KORELASI
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
Regresi & Korelasi Linier Sederhana
ANALISIS KORELASI DAN REGRESI LINEAR SEDERHANA
ANALISA REGRESI & KORELASI SEDERHANA
BAB VII ANALISIS KORELASI DAN REGRESI LINIER SEDERHANA
REGRESI LINEAR.
ANALISIS KORELASI DAN REGRESI LINEAR SEDERHANA
Analisis Regresi (IV) :
ANALISIS REGRESI DAN KORELASI LINIER
Analisis Regresi Sederhana
REGRESI DAN KORELASI.
Regresi dan Korelasi Linier
STATISTIKA PENGERTIAN JENIS – JENIS DATA
UKURAN PENYEBARAN (VARIABILITAS)
ANALISIS REGRESI DAN KORELASI
REGRESI LINEAR DALAM ANALISIS KUANTITATIF
Variabel Penelitian.
STATISTIK II Pertemuan 14: Analisis Regresi dan Korelasi
Analisis Korelasi dan Regresi
STATISTIKA Pertemuan 10: Analisis Regresi dan Korelasi
ANALISIS KORELASI DAN REGRESI LINEAR SEDERHANA
Pertemuan ke 14.
REGRESI LINEAR SEDERHANA
Khaola Rachma Adzima FKIP-PGSD Universitas Esa Unggul
Pertemuan ke 14.
REGRESI LINEAR SEDERHANA
Sisaan / Galat / Residual
ANALISIS REGRESI & KORELASI
PERAMALAN DENGAN GARIS REGRESI
REGRESI LINIER DAN KORELASI
PENDAHULUAN Dalam kehidupan sering ditemukan adanya sekelompok peubah yang diantaranya terdapat hubungan alamiah, misalnya panjang dan berat bayi yang.
REGRESI LINEAR BERGANDA DAN REGRESI (TREND) NONLINEAR
Korelasi dan Regresi Linear Berganda
REGRESI LINEAR BERGANDA DAN REGRESI (TREND) NONLINEAR
ANALISIS KORELASI.
Regresi Linear Sederhana
MUHAMMAD HAJARUL ASWAD
KORELASI DAN REGRESI SEDERHANA
BAB 7 persamaan regresi dan koefisien korelasi
REGRESI LINEAR.
REGRESI LINEAR.
Pengantar Aplikasi Komputer II Analisis Regresi Linier Berganda
REGRESI LINEAR SEDERHANA
Bab 4 ANALISIS KORELASI.
Regresi Linier Berganda
ANALISIS KORELASI DAN REGRESI LINEAR SEDERHANA
REGRESI LINEAR.
Lektion ACHT(#8) – analisis regresi
Korelasi dan Regresi Aria Gusti.
Transcript presentasi:

REGRESI DAN KORELASI Pada bab ini akan membahas dua bagian yang saling berhubungan, khususnya dua kejadian yang dapat diukur secara matematis. Dalam hal dua kejadian yang saling berhubungan, ada dua hal yang perlu diukur dan dianalisis, yaitu: Bagaimana hubungan fungsional (persamaan matematis) antara dua kejadian tersebut -> analisis regresi Bagaimana kekuatan (keeratan) hubungan dua kejadian itu -> analisis korelasi

REGRESI LINEAR SEDERHANA Garis regresi/ regresi: garis lurus/ garis linear yang merupakan garis taksiran atau perkiraan untuk mewakili pola hubungan antara variabel X dan variabel Y. Cara untuk mencari persamaan garis regresi: Dimana Y = variabel terikat X = variabel bebas a = intersep (pintasan) bilamana X=0 b = koefisien arah (slope) dari garis regresi 2

Koefisien regresi a dan b dapat dicari dengan rumus:

Rumus lain untuk menghitung koefisien a dan b adalah:

Total kuadrat eror dapat dihitung dengan: Kita dapat membuat garis regresi lebih dari satu dari suatu data. Lalu garis regresi manakah yang paling baik?? Garis regresi yang paling baik adalah garis regresi yang mempunyai total kuadrat kesalahan/ total kuadrat selisih/ total kuadrat eror yang paling minimum. Total kuadrat eror dapat dihitung dengan: 5

Selanjutnya bila diambil akarnya, maka diperoleh: Bentuk terakhir ini disebut Kesalahan baku dari penafsiran Atau disebut juga Standard error of estimate Rumus di atas dapat di jabarkan menjadi:

Nih….. Contoh Soal Regresi…… Berat Badan 2 3 4 5 6 7 8 Tinggi Badan 9 Tentukanlah persamaan regresi dan kesalahan baku penafsirannya! Jawab: Persamaan regresi adalah: Untuk melengkapi persamaan tersebut, maka perlu dicari nilai a dan b. Cara mencari nilai a dan b adalah:

Untuk mempermudah mencari nilai – nilai yang diperlukan, maka akan digunakan tabel. Berat Badan (X) 2 3 4 5 6 7 8 ∑X = 35 (∑X) = 1225 Tinggi Badan (Y) 9 ∑Y = 36 X 16 25 36 49 64 ∑X = 203 XY 15 54 42 56 ∑XY = 198 Masukan nilai – nilai yang telah diketahui, ke dalam rumus untuk mencari nilai a dan b:

Setelah diketahui, nilai a dan b, maka masukan nilai a dan b ke dalam persamaan regresi. Hasilnya adalah: Ini persamaan regresi / hubungan dari variabel X dan Y tadi…. Ngerti kan???? b. Mencari nilai kesalahan baku dari penafsiran.

Masukan nilai X ke dalam persamaan regresi untuk mencari nilai Y regresi Berat Badan (X) 2 3 4 5 6 7 8 Tinggi Badan (Y) 9 3.21 3,85 4,49 5,13 5,77 6,41 7,05 0,79 1,15 -2,49 -2,13 3,33 -0,41 -0,05 0,6241 1,3225 6,2001 4,5369 11,0889 0,1681 0,0025 23,9431 Cara mencari nilai Y regresi, masukan nilai masing – masing X ke dalam persamaan regresi.

X 1 = 2 -> X 2 = 3 -> X 3 = 4 -> X 4 = 5 -> X 5 = 6 -> X 6 = 7 -> X 7 = 8 ->

Maka nilai kesalahan baku dari taksiran regresi adalah: Akhirnya…. Terjawab semuanya…. Mudah kan? ^^ Perlu diketahui, bahwa selain regresi linear, dikenal juga regresi yang bukan linear, yaitu: Parabola kuadrat Parabola kubik Eksponen Geometrik Logistik Hiperbola Gompertz Sekedar buat pengetahuan aja,,, ga dipelajari di bab ini….. Tapi kalo mau,, otodidak aja ya…

KOEFISIEN KORELASI Perumusan koefisien korelasi dilakukan dengan memakai perbandingan antara variasi yang dijelaskan dengan variasi total. Variasi total dari Y terhadap dirumuskan oleh Variasi yang dijelaskan Variasi yang tidak dijelaskan

Koefisien korelasi (r) adalah akar dari koefisien determinasi Perbandingan antara variasi yang dijelaskan dengan variasi total, yaitu: Koefisien korelasi (r) adalah akar dari koefisien determinasi adalah koefisien determinasi Rumus r pertama

Keterangan: Nilai r = -1 disebut korelasi linear negatif (berlawanan arah); artinya terdapat hubungan negatif yang sempurna antara variabel X dan Y Nilai r = 1 disebut korelasi linear positif (searah); artinya terdapat hubungan positif yang sempurna antara variable X dengan variabel Y Nilai r = 0 disebut tidak berkorelasi secara linear, artinya tidak ada hubungan antara variabel X dan Y

Koefisien korelasi dapat juga dicari dengan rumus berikut: Dimana: = kuadrat dari kesalahan baku Rumus r kedua = variansi Y Kedua rumus koefisien korelasi di atas, dapat digunakan untuk mengukur kekuatan hubungan yang bentuknya linear maupun tidak linear. Bila hubungan antara variabel X dan Y bentuknya linear, maka rumus pertama dapat diubah menjadi: Dimana: Disebut juga koefisien korelasi produk momen

Dari rumus terakhir, yaitu koefisien korelasi produk momen (product momen formula) Apabila kita ambil: Merupakan kovarians dari X dan Y Merupakan simpangan baku dari X Merupakan simpangan baku dari Y Merupakan variansi dari Y Merupakan variansi dari X

Dengan demikian, maka rumus koefisien korelasi dapat juga ditulis: Gmana??? Bingung rumus mana yang harus digunakan??? Ga usah khawatir… sesuaikan aja sama data yang diketahui….. OK?!!

Arti dari koefisien korelasi r adalah: Bila 0,90 < r < 1,00 atau -1,00 < r < -0,90: artinya hubungan yang sangat kuat Bila 0,70 < r < 0,90 atau -0,90 < r < -0,70: artinya hubungan yang kuat Bila 0,50 < r < 0,70 atau -0,70 < r < -0,50: artinya hubungan yang moderat Bila 0,30 < r < 0,50 atau -0,50 < r < -0,30: artinya hubungan yang lemah Bila 0,0 < r < 0,30 atau -0,30 < r < 0,0: artinya hubungan yang sangat lemah

Contoh soalnya nih…. Biar lebih ngerti……. Soalnya sama aja dengan yang regresi ya…. Berat Badan 2 3 4 5 6 7 8 Tinggi Badan 9 Tentukanlah: Koefisien korelasi (r) dan artinya Koefisien determinasi dan artinya Jawab:

Koefisien korelasi adalah: Berat Badan (X) 2 3 4 5 6 7 8 ∑X = 35 (∑X) = 1225 Tinggi Badan (Y) 9 ∑Y = 36 (∑Y) = 1296 X 16 25 36 49 64 ∑X = 203 XY 15 54 42 56 ∑XY = 198 Y 81 ∑Y = 220 Koefisien korelasi adalah:

Truz….

Kesimpulannya….???? Oleh karena, nilai r = 0,49 terletak antara 0,30 dan 0,50 maka terdapat hubungan positif yang lemah antara tinggi badan dan berat badan. Koefisien determinasi, yaitu Artinya, variasi tinggi badan yang dapat dijelaskan oleh variasi berat badan (X) Mahasiswa oleh persamaan regresi adalah Sebesar 24,01 %. Sisanya 75,99% dipengaruhi oleh faktor lain.

TUGAS 2 Data pada suatu pabrik kertas menunjukkan bahwa banyaknya mesin yang rusak ada hubungannya dengan kecepatan beroperasi mesin cetak. Tergambar pada tabel di bawah ini. Kecepatan mesin permenit 8 9 10 11 12 13 15 16 Jumlah kerusakan kertas (lembar) 6 7 5

Persamaan regresi linear Tentukanlah: Persamaan regresi linear Berapa perkiraan jumlah kertas yang rusak, jika kecepatan mesin permenit adalah 18? Tentukan kesalahan baku yang diberikan oleh persamaan regresi! Tentukanlah koefisien korelasi dan koefisien determinasi data tersebut serta berikan artinya masing – masing! Deadline… Next week… Don’t be late OK!!!!

Persamaan regresi linear STATISTIKA QUIZ 3 Data pada suatu pabrik kertas menunjukkan bahwa banyaknya mesin yang rusak ada hubungannya dengan kecepatan beroperasi mesin cetak. Tergambar pada tabel di bawah ini. Tentukanlah: Persamaan regresi linear Berapa perkiraan jumlah kertas yang rusak, jika kecepatan mesin permenit adalah 20? Kecepatan mesin permenit 7 8 9 10 11 12 14 15 Jumlah kerusakan kertas (lembar) 5 6 4