Oleh : Muhammad Ruswandi Djalal

Slides:



Advertisements
Presentasi serupa
PENGENDALIAN KECEPATAN MOTOR DC DENGAN PID CONTROLLER
Advertisements

BAB IV Aksi Dasar Kontroler Feedback
7 Sebaran Penarikan Contoh/Sampel dan Penduga Titik Bagi Parameter.
Artificial Intelligent
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
PERKEMBANGAN DEFINISI TEKNOLOGI PENDIDIKAN
Reduksi / Pengurangan Set-Up
Concept Selection.
Game Theory Purdianta, ST., MT..
Desain dan Analisis Algoritma
Pert. 4. Mengapa harus memiliki strategi IS/IT?
IMAM ZAENUDIN, Perbedaan Hasil Belajar Siswa Antara Pembelajaran Menggunakan Model Contextual Teaching and Learning (CTL) dan Pembelajaran Konvensional.
BLACK BOX TESTING.
MODELING AND ANALYSIS - 1 Pertemuan - 05
Bina Nusantara Model Simulasi Peretemuan 23 (Off Clas) Mata kuliah: K0194-Pemodelan Matematika Terapan Tahun: 2008.
© 2002 Prentice-Hall, Inc.Chap 1-1 Bab 1 Pendahuluan.
Testing Implementasi Sistem Oleh :Rifiana Arief, SKom, MMSI
1 Session 4 Decision Making For Computer Operations Management (Linear Programming Method)
METHOD, ARRAY DAN STRING
Fuzzy for Image Processing
1 Dynamic Response: 1 st and 2 nd Order Systems March 24, 2004.
Dr. Nur Aini Masruroh Deterministic mathematical modeling.
1 Pertemuan 15 Game Playing Matakuliah: T0264/Intelijensia Semu Tahun: Juli 2006 Versi: 2/1.
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
1 KONSEP DAN TUJUAN MANAJEMEN STRATEJIK Pertemuan 2 Matakuliah: J0134/ Manajemen Strategik Tahun: 2006.
Inventory System Simulation Pemodelan Sistem. Kapan saat yang tepat untuk meng- order? Berapa banyak yang perlu di-order? Inventory Systems.
1 INTRODUCTION Pertemuan 1 s.d 2 Matakuliah: A0554/Analisa dan Perancangan Sistem Informasi Akuntansi Tahun: 2006.
Chapter 10 – The Design of Feedback Control Systems PID Compensation Networks.
Smoothing. Basic Smoothing Models Moving average, weighted moving average, exponential smoothing Single and Double Smoothing First order exponential smoothing.
Ambient Noise Measurement and Characterization of Underwater Acoustic Channel in Surabaya Bay Tri Budi Santoso, Endang Widjiati, Wirawan, Gamantyo Hendrantoro.
Imam Cholissodin | Algoritma Evolusi Imam Cholissodin |
PENGENALAN KECERDASAN KOMPUTASIONAL
KOMUNIKASI DATA Materi Pertemuan 8.
Pert. 16. Menyimak lingkungan IS/IT saat ini
Oleh : Desca Marwan Toni (G )
Paralelisasi dan Distribusi
Branch and Bound Lecture 12 CS3024.
Modeling DC Motor.
Oleh : Muhammad Ruswandi Djalal
TUGAS PENGENDALIAN KUALITAS
BY EKA ANDRIANI NOVALIA RIZKANISA VELA DESTINA
Reduksi / Pengurangan Set-Up
Manajemen Mutu Proyek Muhammad Rachmadi.
the formula for the standard deviation:
CSG3F3/ Desain dan Analisis Algoritma
Artificial Intelligence (AI)
CSH4313 Kecerdasan Kolektif (Swarm Intelligence) Bee Colony Optimization (BCO) Semester Ganjil 2017/2018 Dr. Suyanto, S.T., M.Sc. Web:
Two-and Three-Dimentional Motion (Kinematic)
Desain dan Analisis Algoritma
13-1 Lecture slides to accompany Engineering Economy 7 th edition Leland Blank Anthony Tarquin Chapter 13 Breakeven and Payback Analysis © 2012 by McGraw-Hill.
Ant Colony Optimization.
THE EFFECT OF COOPERATIVE LEARNING TYPE JIGSAW PROBLEM SOLVING
Dasar-Dasar Sistem Informasi
FUZZY-TLBO OPTIMAL REACTIVE POWER CONTROL VARIABLES PLANNING
Eksperimen Satu Faktor: (Disain RAL)
Algoritma Genetika.
Manajemen Mutu Proyek Muhammad Rachmadi.
Pertemuan 15 ALGORITMA GENETIKA
Analisis Korelasi dan Regresi Berganda Manajemen Informasi Kesehatan
CSH4313 Kecerdasan Kolektif (Swarm Intelligence) Firefly Algorithm (FA) Semester Ganjil 2017/2018 Dr. Suyanto, S.T., M.Sc. Web:
Ukuran Akurasi Model Deret Waktu Manajemen Informasi Kesehatan
PENGARUH KEPEMIMPINAN TERHADAP KEPUASAN KERJA
Physical Property Of Corn Seed
How to Set Up AT&T on MS Outlook ATT is a multinational company headquartered in Texas. ATT services are used by many people widely across.
KONTRAK PERKULIAHAN.
Copyright©2010 Companyname Free template by Investintech PDF SolutionsInvestintech PDF Solutions Placenta previa is placenta implantation on the uterine.
Algoritma Genetika. Melakukan Optimasi Fitness Contoh Fungsi Fitnes Y = - (x 2 - 1) GA akan melakukan optimasi terhadap fungsi tersebut.
Kelompok 13 Nama Anggota : Sigit Dwi Prianto Praditya F Marliyana.
Kendali Proses Industri. Sistem – Sebuah susunan komponen – komponen fisik yang saling terhubung dan membentuk satu kesatuan untuk melakukan aksi tertentu.
Work System Design “Work Measurement” Hardianto Iridiastadi, Ph.D.
Transcript presentasi:

Oleh : Muhammad Ruswandi Djalal 2213201008 Optimization of PID Control for DC Motor Based On Artificial Bee Colony Algorithm Wudai Liao, Yingyue Hu, Haiquan Wang Zhongyuan University of Technology, China IEEE, Proceedings of the 2014 International Conference on Advanced Mechatronic Systems, Kumamoto, Japan, August 10-12, 2014 Oleh : Muhammad Ruswandi Djalal 2213201008

Problems and Solutions... Tuning parameter PID Tuning parameter PID using ABC

Coba dibandingkan Firefly Algorithm Cuckoo Search Algorithm Bat Algorithm Flower Pollination Algorithm Differential Evolution Ant Colony Optimization Particle Swarm Optimization Imperialist Competitive Algorithm

I. INTRODUCTION PID : Simple structure, good Stability & strong Robustness PID Parameter Manual method, large overshoot and difficult to get ideal control effect. Artificial bee colony

II. ABC ALGORITHM

Artificial Bee Colony Select Best Food Foraging Sharing Information Konsep : Lebah mencari sumber makanan (madu) yang terbaik

FORAGING Source A Source B Sampling

SHARING INFORMATION Hive A,B,C Sample Source Hive A,B,C Sample waggle dance

Source A SELECT FOOD SOURCE

Compare current & new food Inisialisasi Movement of scout bee Compare current & new food fi is the fitness value of solution Zi. If the nectar amount of the new solution is higher than of the previous one(the fitness of Zi is better than Yi), the bee memories the new position and forgets the old one.

Artificial Bee Colony Inisialisasi Populasi lebah (Kp, Ki, Kd) Proses (Foraging) Select Best Food Kp “best” Ki “best” Kd “best” Konsep : Lebah mencari sumber makanan (madu) yang terbaik Objective Function

III. DESIGN OF PID CONTROLLER DC Motor Modeling PID controller Designing

DC Motor Modeling DC permanent magnet motor rated speed is 1400rpm speed measured 1250rpm In order to obtain the parameters of the first-order system, system identification theory[19] is adopted Mechanical gain Mechanical time constant.

PID controller Design how to configure the three parameters of PID (Kp, Ki, Kd) P element : to reduce the deviation I element : to eliminate static error and improve the stability of system D element : to reduce the setting time

Objective Function Objective Function

IV. Simulation & Analysis sampling time, T = 10 ms Kp [0,40] Ki [0,10] Kd [0,1] Maxcycle 100

V. Conclusions Optimization problem of PID parameters for DC motor can be effectively solved by ABC algorithm the validity of ABC algorithm which can be effectively applied to optimize the parameters of PID controller in DC motor system is proved.

Coba dibandingkan Firefly Algorithm Cuckoo Search Algorithm Bat Algorithm Flower Pollination Algorithm Differential Evolution Ant Colony Optimization Particle Swarm Optimization Imperialist Competitive Algorithm

Firefly Algorithm

Firefly Algorithm Best Firefly Inisialisasi Kunang-Kunang Perpindahan (Proses) Best Firefly Konsep : Kunang-Kunang akan tertarik pada yang lebih terang

Cuckoo Search Algorithm

Cuckoo Search Algorithm Inisialisasi Sarang Pencarian (Proses) Best Nest Konsep : Menempatkan telurnya di sarang burung lain

Bat Algorithm

Bat Algorithm Posisi Terbaik Inisialisasi Populasi Pencarian (Proses) Konsep : terbang di kegelapan malam mencari makanan tanpa menabrak sesuatu apapun (Kemampuan Ekolokasi)

Flower Pollination Algorithm

Flower Pollination Algorithm Inisialisasi Populasi Flowers Random (Proses) Best Solution Konsep : terinspirasi dari alam sekitar, yaitu proses pernyebukan bunga (Biotik & abiotik)

Differential Evolution

Differential Evolution Inisialisasi Populasi Mutasi Populasi Populasi Baru Konsep : Terinspirasi dari evolusi biologis berbasis populasi yang menggunakan siklus perulangan dari rekombinasi dan seleksi untuk mengarahkan populasi mencari nilai optimum

Ant Colony Optimization

Ant Colony Optimization Inisialisasi tour Best rute Konsep : Menemukan jalur terpendek antara sarang dan sumber makanan dengan mengikuti jejak feromon

Particle Swarm Optimization

Particle Swarm Optimization Inisialisasi Partikel Random (Proses) Best Position Konsep : meniru proses alam dalam berkomunikasi satu sama lain dalam berkumpul, migrasi, atau berburu

Imperialist Competitive Algorithm

Imperialist Competitive Algorithm Inisialisasi Empire Kompetisi (Proses) Best Empire konsep : kompetisi kerajaan untuk memperoleh kekuasaan terbesar

Ant Colony Optimization Imperialist Competitive Alg. Param. Firefly Algorithm Cuckoo Bat Flower Diff. Evolution Ant Colony Optimization Particle Swarm Opt. Imperialist Competitive Alg. Kp 40 4.36 25.2082  39.6776  39.7801 37.6829 34.7941 Ki 2.8170 9.1  7.2255  2.8930 9.9951 9.1684 1.4529 0.0953 Kd 1 0.59  0.0648  0.0052 0.9775 0.4777

Sekian...