Tri Rahajoeningroem,MT T. Elektro - UNIKOM VEKTOR Tri Rahajoeningroem,MT T. Elektro - UNIKOM
Tujuan Pembelajaran Mahasiswa dapat memahami besaran vektor Mahasiswa memahami dan dapat mengoperasikan besaran vektor Mahasiswa mampu menggunakan besaran vektor untuk memecahkan permasalahan dalam bidang medan elektromagnetik
Outline Definisi besaran vektor dan sklara Cara menuliskan besaran vektor Operasi matematik vektor (penjumlahan dan perkalian) Sifat-sifat perkalian vektor Vektor satuan Analisa vektor
Besaran Skalar Besaran Vektor z y x BESARAN SKALAR DAN VEKTOR Sifat besaran fisis : Skalar Vektor Besaran Skalar Besaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan). Contoh : waktu, suhu, volume, laju, energi Catatan : skalar tidak tergantung sistem koordinat Besaran Vektor z x y Besaran yang dicirikan oleh besar dan arah. Contoh : kecepatan, percepatan, gaya Catatan : vektor tergantung sistem koordinat
Besar vektor A = A= |A| (pakai tanda mutlak) PENGGAMBARAN DAN PENULISAN (NOTASI) VEKTOR Gambar : P Q Titik P : Titik pangkal vektor Titik Q : Ujung vektor Tanda panah : Arah vektor Panjang PQ = |PQ| : Besarnya (panjang) vektor Besar vektor A = A= |A| (pakai tanda mutlak) Notasi Vektor A Huruf tebal Pakai tanda panah di atas A Huruf miring Catatan : Untuk selanjutnya pada handout ini notasi vektor yang digunakan huruf tebal Untuk penulisan dalam tugas dan ujian pakai tanda panah d atas
Catatan : a. Dua vektor sama jika arah dan besarnya sama A B A = B b. Dua vektor dikatakan tidak sama jika : 1. Besar sama, arah berbeda B A A B 2. Besar tidak sama, arah sama A B A B 3. Besar dan arahnya berbeda A B A B
OPERASI MATEMATIK VEKTOR Operasi jumlah dan selisih vektor Operasi kali JUMLAH DAN SELISIH VEKTOR Metode : Jajaran Genjang Segitiga Poligon Uraian 1. Jajaran Genjang + = A B -B R = A+B S = A-B R = A + B Besarnya vektor R = | R | = Besarnya vektor A+B = R = |R| = A + B + 2 AB cos θ 2 2 Besarnya vektor A-B = S = |S| = A + B - 2 AB cos θ 2 2
Jika vektor A dan B searah θ = 0o : R = A + B Jika vektor A dan B berlawanan arah θ = 180o : R = A - B Jika vektor A dan B Saling tegak lurus θ = 90o : R = √(A2+B2) Catatan : Untuk Selisih (-) arah Vektor di balik 2. Segitiga + = A+B A B 3. Poligon (Segi Banyak) + = A B C D A+B+C+D
Vektor diuraikan atas komponen-komponennya (sumbu x dan sumbu y) 4. Uraian Vektor diuraikan atas komponen-komponennya (sumbu x dan sumbu y) Y A = Ax.i + Ay.j ; B = Bx.i + By.j Ax = A cos θ ; Bx = B cos θ Ay = A sin θ ; By = B sin θ A Ay B By Ax Bx X Besar vektor A + B = |A+B| = |R| Rx = Ax + Bx Ry = Ay + By |R| = |A + B| = Arah Vektor R (terhadap sb.x positif) = tg θ = θ = arc tg
PERKALIAN VEKTOR 1. Perkalian Skalar dengan Vektor 2. Perkalian vektor dengan Vektor Perkalian Titik (Dot Product) Perkalian Silang (Cross Product) 1. Perkalian Skalar dengan Vektor Hasilnya vektor k : Skalar A : Vektor C = k A Vektor C merupakan hasil perkalian antara skalar k dengan vektor A Catatan : Jika k positif arah C searah dengan A Jika k negatif arah C berlawanan dengan A k = 3, A C = 3A
2. Perkalian Vektor dengan Vektor Perkalian Titik (Dot Product) Hasilnya skalar A B = C C = skalar θ A B B cos θ A cos θ Besarnya : C = |A||B| Cos θ A = |A| = besar vektor A B = |B| = besar vektor B Θ = sudut antara vektor A dan B
Sifat-sifat Perkalian Titik (Dot Product) Komutatif : A B = B A Distributif : A (B+C) = (A B) + (A C) Catatan : Jika A dan B saling tegak lurus A B = 0 Jika A dan B searah A B = A B Jika A dan B berlawanan arah A B = - A B
Perkalian Silang (Cross Product) Hasilnya vektor θ A B C = A x B C = B x A Catatan : Arah vektor C sesuai aturan tangan kanan Besarnya vektor C = A x B = A B sin θ Sifat-sifat : Tidak komutatif A x B B x A Jika A dan B saling tegak lurus A x B = B x A Jika A dan B searah atau berlawan arah A x B = 0 =
Vektor Product (Cross Product) Dalam bentuk komponen vektor a b v Utk mengingat rumus di atas (ingat rumus determinan matrik)
Sifat-sifat Perkalian Titik (Dot Product) Vektor Satuan = 1 i j k Sifat-sifat Perkalian silang (Cross Product) Vektor Satuan i x i j x j k x k = i x j j x k k x i k j i i j k
Nilai dari satuan vektor-vektor tersebut besarnya adalah satu satuan VEKTOR SATUAN Vektor satuan adalah sebuah vektor yang didefinisikan sebagai satu satuan vektor. Jika digunakan sistem koordinat Cartesian (koordinat tegak) tiga dimensi, yaitu sumbu x dan sumbu y dan sumbu z. Vektor satuan pada sumbu x adalah i, vektor satuan pada sumbu y adalah j dan pada sumbu z adalah k. Nilai dari satuan vektor-vektor tersebut besarnya adalah satu satuan
VEKTOR SATUAN Vektor yang besarnya satu satuan Notasi Besar Vektor Dalam koordinat Cartesian (koordinat tegak) Z A k Arah sumbu x : j Arah sumbu y : Y i Arah sumbu z : X
Contoh Soal 1. Lima buah vektor digambarkan sebagai berikut : Besar dan arah vektor pada gambar di samping : y x E A C D B Vektor Besar (m) Arah (o) A 19 B 15 45 C 16 135 D 11 207 E 22 270 Hitung : Besar dan arah vektor resultan. Jawab : Vektor Besar (m) Arah(0) Komponen X(m) Komponen Y (m) A B C D E 19 15 16 11 22 45 135 207 270 10.6 -11.3 -9.8 11.3 -5 -22 RX = 8.5 RY = -5.1 = R = 2 X R + 5 . 8 y ) 1 ( - 9,91 Besar vektor R : Arah vektor R terhadap sumbu x positif : tg = = - 0,6 5 . 8 1 - = 329.030 (terhadap x berlawanan arah jarum jam )
2. Diketahui koordinat titik A adalah (2, -3, 4) 2. Diketahui koordinat titik A adalah (2, -3, 4). Tuliskan dalam bentuk vektor dan berapa besar vektornya ? Vektor Jawab : = + 2 (-3) 4 A 2i – 3j + 4k 29 satuan 3. Tentukanlah hasil perkalian titik dan perkalian silang dari dua buah vektor berikut ini : 2i – 2j + 4k A = i – 3j + 2k B Jawab : Perkalian titik : Perkalian silang : A . B = 2.1 + (-2)(-3) + 4.2 = 16 2 3 1 4 - k j i A x B = = { (-2).2 – 4.(-3)} i – {2.2 – 4.1} j + {2.(-3) – (-2).1} k = (-4+12) i + (4-4) j + (-6+2) k = 8i + 0j – 4j = 8i – 4k