VEKTOR VEKTOR PADA BIDANG
VECTOR VECTOR IN PLANE
SK : KD : Menerapkan konsep vektor dalam pemecahan masalah Menerapkan konsep vektor pada bidang datar Menerapkan konsep vektor pada bangun ruang TUJUAN PELATIHAN: Peserta memiliki kemampuan untuk mengembangkan keterampilan siswa dalam melakukan, menerapkan dan memecahkan masalah dalam kehidupan sehari-hari yang berkaitan dengan vektor. VEKTOR Hal.: 3
THE PURPOSE OF LEARNING: VECTOR CS: Applying vector concept in solving a problem BC : Applying vector in a plane Applying vector concept in polyhedral THE PURPOSE OF LEARNING: The students have ability to develop their skill in doing, applying, and solving daily life problem that connected with vector. VEKTOR Hal.: 4
BESARAN VEKTOR PADA BIDANG DATAR VEKTOR SKALAR Memiliki arah (gaya, kecepatan, Perpindahan dsb) Tidak memiliki arah (panjang, masa,waktu,suhu dsb) VEKTOR Hal.: 5
Doesn’t have direction VECTOR MAATREGEL VECTOR SCALAR Have direction (force, speed, Distance, etc) Doesn’t have direction (length, mass, time, temperature, etc) VEKTOR Hal.: 6
VEKTOR PADA BIDANG DATAR Pengalaman Belajar 1. Berapa besar resultan gaya pada sebuah katrol yang ditunjukan seperti pada gambar di bawah ini! P2 = 4 KN 600 P1 = 5 KN VEKTOR Hal.: 7
VECTOR Learning Experience 1. How big id the force resultant in a pulley that is shown in the following picture. P2 = 4 KN 600 P1 = 5 KN VEKTOR Hal.: 8
PERHATIKAN RUAS-RUAS GARIS BERARAH BERIKUT VEKTOR PADA BIDANG DATAR PERHATIKAN RUAS-RUAS GARIS BERARAH BERIKUT SETIAP RUAS GARIS BERARAH MEWAKILI PERGESERAN YANG SAMA: KE KIRI 2 KE ATAS LAM-BANG: 2 KE ATAS 2 KE KIRI – 4 2 KE ATAS 2 KE KIRI – 4 KE KIRI – 4 2 KE ATAS 2 4 KE KIRI 2 KE ATAS 2 – 4 – 4 SETIAP RUAS GARIS BERARAH DI ATAS MEWAKILI SEBUAH VEKTOR 2 VEKTOR Hal.: 9
EVERY DIRECTED LINE SEGMENT REPRESENT THE SAME SHIFTING: VECTOR IN A PLANE LOOK AT THE DIRECTED LINE SEGMENT BELOW EVERY DIRECTED LINE SEGMENT REPRESENT THE SAME SHIFTING: TO LEFT 2 TO UPWARD SYMBOL 2 KE ATAS 2 KE KIRI – 4 2 KE ATAS 2 KE KIRI – 4 KE KIRI – 4 2 KE ATAS 2 1 To left 2 To upward 2 – 4 – 4 EVERY DIRECTED LINE SEGMENT ABOVE REPRESENT A VECTOR 2 VEKTOR Hal.: 10
SETIAP RUAS GARIS BERARAH MEWAKILI PERGESERAN YANG SAMA: VEKTOR PADA BIDANG DATAR 5 KE KIRI 4 KE BAWAH SETIAP RUAS GARIS BERARAH MEWAKILI PERGESERAN YANG SAMA: LAM-BANG: 5 KE KIRI – 5 4 KE BAWAH –4 5 KE KIRI – 5 4 KE BAWAH –4 5 KE KIRI 4 KE BAWAH – 4 – 5 – 4 – 5 SETIAP RUAS GARIS BERARAH DI ATAS MEWAKILI SEBUAH VEKTOR VEKTOR Hal.: 11
EVERY DIRECTED LINE SEGMENT ABOVE REPRESENT A VECTOR VECTOR IN A PLANE 5 TO LEFT 4 DOWNWARD EVERY DIRECTED LINE SEGMENT REPRESENT THE SAME SHIFTING: SYMBOL 4 KE BAWAH –4 5 KE KIRI – 5 5 KE KIRI – 5 5 TO LEFT 4 To downward – 4 – 5 4 KE BAWAH –4 – 4 – 5 EVERY DIRECTED LINE SEGMENT ABOVE REPRESENT A VECTOR VEKTOR Hal.: 12
VEKTOR PADA BIDANG DATAR Soal Lukislah ruas garis melalui titik A yang sejajar dan ruas garis melalui titik B yang tegak lurus ! A B Q P VEKTOR Hal.: 13
VECTOR Exercise Draw a line segment through point A that parallel with and a perpendicular line segment through point B. A B Q P VEKTOR Hal.: 14
Penyelesaian: VEKTOR PADA BIDANG DATAR B Q P D C E VEKTOR Hal.: 15 3 1
VECTOR IN A PLANE Solution: B Q P 3 1 A D C E Hal.: 16 VEKTOR Hal.: 16
VEKTOR PADA BIDANG DATAR VEKTOR POSISI Jika titik P adalah sebuah titik pada bidang Kartesius maka vektor = P (x1,y1 ) Jika koordinat titik P(x1, y1) maka vektor posisi dari titik P adalah: p y1 disebut komponen vektor p X1 Vektor Satuan Adalah vektor yang panjangnya satu satuan Vektor satuan dengan arah sumbu X, disebut dengan Vektor satuan dengan arah sumbu Y, disebut dengan VEKTOR Hal.: 17
VECTOR IN A PLANE POSITION VECTOR If point P is a point in Cartesian plane, then vector = P (x1,y1 ) If the coordinate of point P(x1, y1) then position vector from point P is: p y1 Is called vector component of p X1 Unit vector is a vector that have length one unit. Unit vector with direction of X axis is called Unit vector with direction of X axis is called VEKTOR Hal.: 18
VEKTOR PADA BIDANG DATAR VEKTOR DALAM BENTUK KOMBINASI LINEAR Perhatikan vektor p pada gambar berikut: P (x1,y1) X Bila titik P(x1,y1) maka OP = OQ + QP Maka dapat dinyatakan dengan vektor basis: p = x1 i + y1 j x1 dan y1 disebut komponen-komponen vektor p VEKTOR Hal.: 19
It can be stated in basis vector: VECTOR IN PLANE VECTOR IN THE FORM OF LINEAR COMBINATION Look at the vector p below: P (x1,y1) X If point P(x1,y1) then OP = OQ + QP It can be stated in basis vector: p = x1 i + y1 j x1 and y1 is called the components vector p VEKTOR Hal.: 20
VEKTOR PADA BIDANG DATAR PANJANG VEKTOR Besar atau panjang suatu vektor apabila digambarkan dengan garis berarah adalah panjang ruas garis berarah itu. p P(x1,y1) o Q Maka panjang vektor Jadi bila adalah VEKTOR Hal.: 21
VECTOR IN A PLANE p o VECTOR LENGTH The vector length is can be drawn by directed line. It is the length of directed line segment. p P(x1,y1) o Q Then, the vector length So, if is VEKTOR Hal.: 22
VEKTOR PADA BIDANG DATAR Contoh soal Nyatakan vektor posisi titik A (5,3) sebagai vektor basis (kombinasi linier dari i dan j) Jawab: vektor a atau = 5 i + 3 j Nyatakan vektor posisi titik A (3,2,- 4) sebagai vektor basis (kombinasi linier dari i, j dan k) Jawab: vektor a atau = 3 i + 2 j – 4 k Nyatakan vektor sebagai vektor basis (kombinasi linier dari i dan j) jika titik A (5,-3) dan B (3,2) Jawab: VEKTOR Hal.: 23
Exercise sample VECTOR IN A PLANE Stated the position vector of point A (5,3) as basis vector (linier combination of i and j) Answer : vector a or = 5 i + 3 j Stated the position vector of point A (3,2,- 4) as basis vector (linier combination of i, j and k) Answer: vektor a or = 3 i + 2 j – 4 k Stated vector as basis vector (linear combination of i and j) if point A (5,-3) and B (3,2) Answer : VEKTOR Hal.: 24
VEKTOR PADA BIDANG DATAR Penjumlahan Vektor Jika vektor a dijumlahkan dengan vektor b menghasilkan vektor c di tulis Bagaimana caranya cara segitiga cara jajaran genjang VEKTOR Hal.: 25
VECTOR IN A PLANE Vector Addition If vector a is added with vector b, we will get vector c. it is denoted by How Triangle way Parallelogram way VEKTOR Hal.: 26
VEKTOR PADA BIDANG DATAR cara segitiga Memindahkan vektor b sehingga Pangkalnya berhimpitan dengan ujung vektor a C b a + b = c B a A B c = a + b AC = AB + BC VEKTOR Hal.: 27
Move vector b so the initial is joint VECTOR IN A PLANE Triangle Way Move vector b so the initial is joint with the end of vector a C b a + b = c B a A B c = a + b AC = AB + BC VEKTOR Hal.: 28
VEKTOR PADA BIDANG DATAR Cara Jajaran Genjang Memindahkan vektor b sehingga pangkalnya berhimpitan dengan pangkal vektor a a a + b = c b b a VEKTOR Hal.: 29
Move vector b, so the initial is join with VECTOR IN A PLANE Parallelogram way Move vector b, so the initial is join with the initial of vector a a a + b = c b b a VEKTOR Hal.: 30
VEKTOR PADA BIDANG DATAR CONTOH SOAL Jabarkan vektor AE dalam bentuk vektor u dan v ? Bagaimana dengan vektor EF ? VEKTOR Hal.: 31
Define vector AE into vector u and v ? VECTOR IN APLANE EXERCISE SAMPLE Define vector AE into vector u and v ? How about vector EF ? VEKTOR Hal.: 32
VEKTOR PADA BIDANG DATAR C D F E VEKTOR Hal.: 33
VECTOR IN A PLANE A B C D F E VEKTOR Hal.: 34
VEKTOR PADA BIDANG DATAR Pengurangan Vektor Selisih vektor a dengan vektor b adalah vektor c yang diperoleh dengan cara menjumlahkan vektor a dengan lawan vektor b a - b = a + ( -b) a – b = a + (-b) = (-b) +a = PS + ST = PT = RQ R b b P Q a -b a S a T VEKTOR Hal.: 35
VECTOR IN A PLANE Vector Subtraction The rest of vector a and vector b is vector c that get from adding vector a with vector b a - b = a + ( -b) a – b = a + (-b) = (-b) +a = PS + ST = PT = RQ R b b P Q a -b a S a T VEKTOR Hal.: 36
VEKTOR PADA BIDANG DATAR Hasil kali bilangan real k dengan vektor a adalah vektor yang panjangnya |k| kali panjang vektor a dan arahnya adalah: sama dengan arah vektor a jika k > 0 berlawanan dengan arah vektor a jika k < 0 sama dengan nol jika k = 0 VEKTOR Hal.: 37
Vector in a Plane The multiplication result of real number k with vector a is vector that the length |k| is multiplied by the length of vector a and the direction is: Equal to the direction of vector a if k > 0 opposite the direction of vector a if k < 0 Equal to zero if k = 0 VEKTOR Hal.: 38
VEKTOR PADA BIDANG DATAR Jika vektor Dalam bentuk ruas garis VEKTOR Hal.: 39
In the form of line segment Vector in a Plane If vector In the form of line segment VEKTOR Hal.: 40
VEKTOR PADA BIDANG DATAR Jika vektor Dalam bentuk ruas garis VEKTOR Hal.: 41
In the form of line segment Vector in a Plane If vector In the form of line segment VEKTOR Hal.: 42
VEKTOR PADA BIDANG DATAR Tunjukkan dengan gambar vektor VEKTOR Hal.: 43
Vector in a Plane Show in vector picture VEKTOR Hal.: 44
VEKTOR . . . ? VEKTOR DALAM BANGUN RUANG Secara aljabar, vektor dalam dimensi dua (R2) adalah pasangan terurut dari bilangan real [x, y], dengan x dan y adalah komponen-komponen vektor tersebut dan dalam dimensi tiga (R3) vektor adalah pasangan terurut dari bilangan real [x, y, z], dengan x, y dan z adalah komponen-komponen vektor tersebut. Secara geometri, vektor merupakan himpunan ruas garis berarah. Panjang ruas garis berarah menandakan ukuran besarnya, sedangkan arah anak panah menunjukkan arah vektor yang bersangkutan VEKTOR Hal.: 45
VECTOR . . . ? In algebra, vector in two dimensional (R2) is orderly pairs of real numbers [x, y], x and y is the components of those vectors and in three dimensional (R3) vector is orderly pairs of real number [x, y, z] x, y and z is the components of those vectors. In geometric, vector is a set of directed line segment. The length of directed line segment shows the size,while the arrow direction shows the vector direction VEKTOR Hal.: 46
VEKTOR PADA BANGUN RUANG VEKTOR POSISI Jika titik P adalah sebuah titik pada bidang Kartesius maka vektor = P (x1,y1 ) Jika koordinat titik P(x1, y1,Z1) maka vektor posisi dari titik P adalah: p y1 X1 disebut komponen vektor p Adalah vektor yang panjangnya satu satuan Vektor Satuan Vektor satuan dengan arah sumbu X, disebut dengan VEKTOR Hal.: 47
BELUM VEKTOR Hal.: 48
VEKTOR PADA BANGUN RUANG Vektor satuan dengan arah sumbu Y, disebut dengan Vektor satuan searah dengan sumbu z disebut dengan VEKTOR Hal.: 49
VECTOR IN POLYHEDRAL Unit vector with the direction of Y axis is called Unit vector that have the same direction with Z axis is called VEKTOR Hal.: 50
VEKTOR PADA BANGUN RUANG PANJANG VEKTOR Jadi bila Maka panjang vektor adalah Jika diketahui dua titik yaitu A (x1, y1,z1) dan B (x2, y2, z2) Didalam ruang maka panjang AB dirumuskan sebagai berikut : VEKTOR Hal.: 51
VECTOR IN POLYHEDRAL VECTOR LENGTH So, if Then, the vector length is Known two points A (x1, y1,z1) and B (x2, y2, z2) In polyhedral, the length of AB is formulated as follows : VEKTOR Hal.: 52
VEKTOR PADA BANGUN RUANG RUMUS PEMBAGIAN Jika titik P terletak pada ruas garis AB maka dapat dinyatakan: O a b A B P n m p Dalam Bentuk Vektor Dalam Bentuk Koordinat VEKTOR Hal.: 53
If point P is in line segment AB Vctor in a Plane Division formula If point P is in line segment AB then it can be stated: O a b A B P n m p In the form of vector In the form of coordinate VEKTOR Hal.: 54
VEKTOR DALAM BANGUN RUANG Perkalian skalar dari dua Vektor Jika dan Hasil kali skalar dua vektor dan adalah VEKTOR Hal.: 55
VECTOR IN POLYHEDRAL The multiplication result of two vectors and is Scalar multiplication from two vectors If and The multiplication result of two vectors and is VEKTOR Hal.: 56
VEKTOR DALAM BANGUN RUANG Hasil kali skalar dua vektor a dan b jika keduanya membentuk sudut tertentu didefinisikan: a.b = Cos dimana :sudut yang diapit oleh kedua vektor a dan b Besar sudut antara vektor a dan vektor b dapat ditentukan dengan: VEKTOR Hal.: 57
VECTOR IN POLYHEDRAL The multiplication result of two vectors a and b. If both of them make certain angle. It is defined: a.b = Cos where :the angle between vector a and b The angle between vector a and b can be determined by: VEKTOR Hal.: 58
VEKTOR DALAM BANGUN RUANG axb a bxa Perkalian Silang Dua Vektor Hasil perkalian silang dua vektor dan didefinisikan : Bila Vektor dan Vektor Maka perkalian silang dua vektor dirumuskan sebagai berikut : Perkalian silang dua matriks bisa juga diselesaikan menggunakan Determinan 3x3 dengan cara Sarrus VEKTOR Hal.: 59
VECTOR IN POLYHEDRAL If vector and Vector b axb a bxa The cross product of two vectors The cross product of vector and is defined: If vector and Vector Then the cross product of two vectors are formulated as follows: Perkalian silang dua matriks bisa juga diselesaikan menggunakan Determinan 3x3 dengan cara Sarrus VEKTOR Hal.: 60