Metode Statistika (STK211)

Slides:



Advertisements
Presentasi serupa
Metode Statistika (STK211)
Advertisements

Konsep Peubah Definisi Skala pengukuran peubah
STATISTIKA DESKRIPSI DAN INFERENSIA
Ukuran Pemusatan (Central Tendency)
Peringkasan Data (Pemusatan dan Penyebaran)
Pertemuan 1 PRAKTIKUM STATISTIKA. Definisi Statistik dan Statistika Statistik adalah kumpulan data dalam bentuk angka maupun bukan angka yang disusun.
DESKRIPSI DATA (STATISTIKA DESKRIPTIF)
BAB VI UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi) (Pertemuan ke-8) Oleh: Andri Wijaya, S.Pd., S.Psi., M.T.I. Program Studi Sistem Informasi Sekolah.
STATISTIK DESKRIPTIF Statistika Deskriptif Statistik Inferensial
7. Penyajian Data TABEL GRAFIK. 7. Penyajian Data TABEL GRAFIK.
Metode Statistika (STK211)
Pertemuan 5: UKURAN PENYEBARAN DATA DAN KEMIRINGAN DIAGRAM
HOMOGEN DAN HETEROGEN DATA
1 6 Statistika Deskriptif. © John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger. Ringkasan Numerik dari.
UKURAN DISPERSI Presented by Astuti Mahardika, M.Pd.
1. Statistika dan Statistik
Statistik Diskriptif.
METODE NUMERIK & GRAFIK
HARGA TENGAH (UKURAN PEMUSATAN)
VARIABEL.
DATA DAN HIPOTESIS (DATA AND HYPOTHESIS)
MENGHITUNG STATISTIKA DESKRIPTIF
STATISTIK DESKRIPTIF Pengumpulan data, pengorganisasian, penyajian data Distribusi frekuensi Ukuran pemusatan Ukuran penyebaran Skewness, kurtosis.
STATISTIKA Jurusan PWK-FT-UB Pertemuan ke-2/2-4,14-16
UKURAN PENYEBARAN (VARIABILITAS)
Metode Statistika (STK211)
DATA DAN HIPOTESIS (DATA AND HYPOTHESIS)
Analisis Univariat dan Bivariat
UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi)
Ukuran Pemusatan (Central Tendency)
Harga Deviasi (Ukuran Penyebaran).
KIMIA ANALISIS Konsep Statistika.
Ukuran Pemusatan - Data Berkelompok
Statistik Deskriptif.
STATISTIK1 Pertemuan 3: Ukuran Pemusatan dan Penyebaran
Statistika Deskriptif Pertemuan 2
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
EKSTRAKURIKULER : DATA ANALYSIS
DATA DAN HIPOTESIS (DATA AND HYPOTHESIS)
Ukuran Variasi atau Dispersi
STATISTIKA DESKRIPTIF
? 1. Konsep Statistika STATISTIKA : Kegiatan untuk : mengumpulkan data
BAB 4 UKURAN PENYEBARAN.
Aplikasi Komputer & Pengolahan Data UKURAN TENDENSI SENTRAL
STATISTIK 1 Pertemuan 5,6: Ukuran Pemusatan dan Penyebaran
Ukuran Variasi atau Dispersi
STANDAR KOMPETENSI LULUSAN MATEMATIKA
DATA.
Ukuran Variasi atau Dispersi
Metode Statistika (STK211)
Drs. Indratmo Yudono, MSi
STATISTIKA Pertemuan 3: Ukuran Pemusatan dan Penyebaran
Ukuran Pemusatan Data Choirudin, M.Pd
STATISTIKA Pertemuan 3: Ukuran Pemusatan dan Penyebaran
Statistika Deskriptif
Ukuran Pemusatan Data Choirudin, M.Pd
UKURAN PENYEBARAN DATA
STATISTIKA DESKRIPTIF
UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi)
Statistika Dasar Bagus Sartono.
Ukuran Pemusatan dan Ukuran Penyebaran
Statistika Deksriptif
UKURAN PENYEBARAN.
Mendeskripsikan Data Fadjar Pambudhi.
BAB 4 UKURAN PENYEBARAN.
Ukuran Penyebaran Data
TEKNIK INFORMATIKA UNIVERSITAS ATMA JAYA YOGYAKARTA
Pertemuan 4 Ukuran Pemusatan
DASAR-DASAR STATISTIKA
STATISTIKA DESKRIPTIF Tendensi Sentral & Ukuran Dispersi KELOMPOK 2.
Transcript presentasi:

Metode Statistika (STK211) Pertemuan II Statistika Dasar (Basic Statistic)

Konsep Peubah Definisi Skala pengukuran peubah Peubah merupakan karakteristik dari objek yang sedang diamati, seperti tinggi tanaman, produksi, dll Skala pengukuran peubah Nominal : mengklasifikasikan Ordinal : mengklasifikasikan dan mengurutkan Interval : mengklasifikasikan, mengurutkan dan membedakan Rasio : mengklasifikasikan, mengurutkan, membedakan dan membandingkan

Statistika Deskripsi dan Eksplorasi Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami. Penyajian data dapat dilakukan melalui: Tabel Gambar (histogram, plot, stem-leaf, box-plot) Peringkasan data dinyatakan dalam dua ukuran yaitu: Pemusatan (Median, Modus, Kuartil, Mean, dll) Penyebaran (Range, Interquartile Range, Ragam)

Ilustrasi I Penyajian Tabel Penyajian Grafik Rekapitulasi menurut Sex No Sex Tinggi Berat Agama 1 167 63 Islam 2 172 74 3 161 53 Kristen 4 157 47 Hindu 5 165 58 6 60 7 162 52 Budha 8 151 45 Katholik 9 158 54 10 11 176 82 12 69 13 163 57 14 15 164 16 50 17 159 61 18 65 19 62 20 169 59 21 173 70 Penyajian Tabel Rekapitulasi menurut Sex Sex Frek. Persen Laki-laki 12 57.14 Perempuan 9 42.86 Rekapitulasi menurut Agama Agama Frekuensi Persen Islam 13 61.90 Kristen 4 19.05 Katholik 2 9.52 Hindu 1 4.76 Budha Rata-rata Tinggi & Berat   Tinggi Berat Laki-laki 166.25 64.75 Perempuan 160.56 53.89 Gabungan 163.81 60.10 Penyajian Grafik

Ilustrasi II Penyajian Dengan Tabel dan Gambar Data Pengamatan Tanaman Obs Tinggi Pohon (m) Diameter Pohon (m) Varietas 1 3.5 0.25 A 2 4.0 0.40 3 2.8 0.20 B 4 3.2 0.21 C 5 3.6 0.30 6 4.2 0.35 7 2.9 0.22 8 2.5 0.18 9 3.8 0.38 10 4.6 0.41 11 2.2 0.15 12 3.4 0.28 D 13 0.37 14 4.8 0.39 15 5.0 Varietas Count CumCnt Percent CumPct A 5 5 33.33 33.33 B 3 8 20.00 53.33 C 3 11 20.00 73.33 D 4 15 26.67 100.00

Penyajian Dengan Tabel dan Gambar

Penyajian Dengan Stem-Leaf Stem-and-Leaf Display: Tinggi Pohon (m), Diameter Pohon (m) Stem-and-leaf of Tinggi Pohon (m) N = 15 Leaf Unit = 0.10 1 2 2 4 2 589 6 3 24 (3) 3 568 6 4 022 3 4 68 1 5 0 Stem-and-leaf of Diameter Pohon (m) N = 15 Leaf Unit = 0.010 2 1 58 5 2 012 7 2 58 (1) 3 0 7 3 5789 3 4 001

Penyajian Dengan Box-plot

Peringkasan Data (Pemusatan dan Penyebaran) Beberapa ukuran pemusatan, yaitu: Modus: Nilai pengamatan yang paling sering muncul Median: Pengamatan yang ditengah-tengah dari data terurut Quartil: Nilai-nilai yang membagi data terurut menjadi 4 bagian yang sama Mean: merupakan pusat massa (centroid) sehingga simpangan kiri dan simpangan kanan sama besar Beberapa ukuran penyebaran, yaitu: Range: besarnya penyebaran data dari data terkecil sampai data terbesar Interquartile Range: besarnya penyebaran data yang diukur mulai quartile satu sampai quartile tiga atau besarnya penyebaran data dari 50% pengamatan ditengah Ragam: merupakan rata-rata jarak kuadrat setiap titik pengataman terhadap nilai mean (rata-rata)

Langkah-langkah teknis Median Urutkan data dari kecil ke besar Cari posisi median (nmed=(n+1)/2) Nilai median Jika nmed bulat, maka Median=X(n+1)/2 Jika nmed pecahan, maka Median=(X(n)/2+ X(n)/2+1)/2 (rata-rata dua pengamatan yang berada sebelum dan setelah posisi median)

Kuartil (Quartile) Metode Belah dua Urutkan data dari kecil ke besar Cari posisi kuartil nq2=(n+1)/2 nq1=(nq2*+1)/2= nq3, nq2* posisi kuartil dua terpangkas (pecahan dibuang) Nilai kuartil 2 ditentukan sama seperti mencari nilai median. Kuartil 1 dan 3 prinsipnya sama seperti median tapi kuartil 1 dihitung dari kiri, sedangkan kuartil 3 dihitung dari kanan.

Metode Interpolasi Urutkan data dari kecil ke besar Cari posisi kuartil nq1=(1/4)(n+1) nq2=(2/4)(n+1) nq3=(3/4)(n+1) Nilai kuartil dihitung sebagai berikut: Xqi=Xa,i + hi (Xb,i-Xa,i) Xa,i = pengamatan sebelum posisi kuartil ke-i, Xb,i = pengamatan setelah posisi kuartil ke-i dan hi adalah nilai pecahan dari posisi kuartil

Jarak antar kuartil (Interquartile range) Rata-rata (Mean) Populasi: Sampel: Wilayah (Range) W=Xmax-Xmin Jarak antar kuartil (Interquartile range) JAK=q3-q1

Ukuran Penyebaran Mutlak Ragam (Variance) Populasi Sampel Simpangan baku (standard deviation) Merupakan akar dari ragam yaitu  simpangan baku populasi dan s simpangan baku sampel

UKURAN PENYEBARAN RELATIF

Data pada ilustrasi II diolah menggunakan MINITAB Descriptive Statistics: Tinggi Pohon (m), Diameter Pohon (m) Variable N N* Mean StDev Variance Minimum Q1 Median Tinggi Pohon (m) 15 0 3.647 0.837 0.700 2.200 2.900 3.600 Diameter Pohon ( 15 0 0.2993 0.0919 0.00845 0.1500 0.2100 0.3000 Variable Q3 Maximum Range IQR Tinggi Pohon (m) 4.200 5.000 2.800 1.300 Diameter Pohon ( 0.3900 0.4100 0.2600 0.1800 Descriptive Statistics: Tinggi Pohon (m) Variable Varietas N N* Mean StDev Variance Minimum Q1 Tinggi Pohon (m) A 5 0 3.620 0.890 0.792 2.200 2.850 B 3 0 2.733 0.208 0.0433 2.500 2.500 C 3 0 3.667 0.503 0.253 3.200 3.200 D 4 0 4.350 0.719 0.517 3.400 3.600 Variable Varietas Median Q3 Maximum Range IQR Tinggi Pohon (m) A 3.800 4.300 4.600 2.400 1.450 B 2.800 2.900 2.900 0.400 0.400 C 3.600 4.200 4.200 1.000 1.000 D 4.500 4.950 5.000 1.600 1.350