Cartesian coordinates in two dimensions

Slides:



Advertisements
Presentasi serupa
PERSAMAAN DAN PERTIDAKSAMAAN
Advertisements

FUNGSI KUADRAT.
Persamaan Garis dan Grafik Kuadrat
Menggambar grafik fungsi aljabar sederhana dan fungsi kuadrat
Soal No 17 halaman 66 Find a) the coordinates of the foci and vertices for hyperbola whose equations given, b) equation of the asymptotes. Sketch the curve.
Cartesian Coordinate System
By Eni Sumarminingsih, SSi, MM
FUNGSI KUADRAT.
PERSAMAAN GARIS PROGRAM STUDI PENDIDIKAN MATEMATIKA Oleh Kelompok 4 :
KUSWANTO, SUB POKOK BAHASAN Mata kuliah dan SKS Manfaat Deskripsi Tujuan instruksional umum Pokok bahasan.
FUNGSI KUADRAT.
Persamaan Kuadrat jika diketahui grafik fungsi kuadrat
Rumus-rumus ini masihkah anda ingat?
Parabolas Circles Ellipses Presented by: 1.Ihda Mardiana H. 2.Hesti Setyoningsih 3.Dewi Kurniyati 4.Belynda Surya F.
Disusun oleh: 1.Dini Rahmawati( ) 2.Rista Tri R( ) 3.Diannesti Mumpuni ( ) 4.Chairrunisa Fandyasari ( ) JURUSAN MATEMATIKA.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Pengertian garis Lurus Koefisien arah/gradien/slope
Menulis Kolom  Kolom adalah opini atau artikel. Tidak seperti editorial, kolom memiliki byline.  Kolom Biasanya ditulis reguler. Biasanya mingguan atau.
Seni & Ilmu Analisis Ekonomi
Universitas Jenderal Soedirman Purwokerto FISIKA DASAR II Oleh : Mukhtar Effendi.
Masalah Transportasi II (Transportation Problem II)
BAB 6 KOMBINATORIAL DAN PELUANG DISKRIT. KOMBINATORIAL (COMBINATORIC) : ADALAH CABANG MATEMATIKA YANG MEMPELAJARI PENGATURAN OBJEK- OBJEK. ADALAH CABANG.
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
Verb Tense Tense denotes the time of the action indicated by a verb. The time is not always the same as that indicated by the name of the tense.
Penggambaran Fungsi Kuadrat dan Fungsi Kubik
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Electric Field Wenny Maulina. Electric Dipole A pair of equal and opposite charges q separated by a displacement d is called an electric dipole. It has.
The eEquation of a Circle Adaptif Hal.: 2 Isi dengan Judul Halaman Terkait The eEquation of a Circle.
Grafika Komputer dan Visualisasi Disusun oleh : Silvester Dian Handy Permana, S.T., M.T.I. Fakultas Telematika, Universitas Trilogi Pertemuan 15 : Kurva.
1 CTC 450 ► Bernoulli’s Equation ► EGL/HGL. Bernoulli’s Equation 2
MATRIKS Konsep Matriks Matrik.
MATRIX Concept of Matrix Matrik.
Linear algebra Yulvi zaika.
IRISAN KERUCUT PERSAMAAN LINGKARAN.
VEKTOR VEKTOR PADA BIDANG.
Pertemuan 4 Fungsi Linier.
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
HUKUM AMPERE.
Recurrence relations.
GEOMETRI SUDUT DAN BIDANG.
NILAI MUTLAK PERSAMAAN GARIS FUNGSI
ASSALAMUALAIKUM WR WB.
Fungsi, Persamaan Fungsi Linear dan Fungsi Kuadrat
Cartesian coordinates in two dimensions
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
FISIKA DASAR Pertemuan ke-3 Mukhtar Effendi.
Parabola Parabola.
VECTOR VECTOR IN PLANE.
FISIKA DASAR By: Mohammad Faizun, S.T., M.Eng.
Crystal Structure.
BILANGAN REAL BILANGAN BERPANGKAT.
Two-and Three-Dimentional Motion (Kinematic)
REAL NUMBERS EKSPONENT NUMBERS.
FACTORING ALGEBRAIC EXPRESSIONS
M-03 SISTEM KOORDINAT kartesius dan kutub
PERSAMAAN GARIS LURUS 1. Bentuk Umum 2. Gradien 3. Menggambar Garis
Pertemuan ke-7 FUNGSI LINIER.
Disusun oleh : KARLINA SARI ( ) ALIFA MUHANDIS S A ( )
GARIS LURUS KOMPETENSI
Persamaan Garis Lurus Latihan Soal-soal.
Peta Konsep. Peta Konsep B. Kedudukan Dua Garis.
Pertemuan 2 – Pendahuluan 2
Persamaan Garis Lurus Latihan Soal-soal.
Solusi Program Linier dengan Metode Grafik
Operasi Matriks Dani Suandi, M.Si..
Persamaan Garis Lurus Latihan Soal-soal.
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Vector. A VECTOR can describe anything that has both MAGNITUDE and DIRECTION The MAGNITUDE describes the size of the vector. The DIRECTION tells you where.
Transcript presentasi:

Cartesian coordinates in two dimensions Sistem Koordinat Cartesian coordinates in two dimensions

Cartesians For a given point P, a line is drawn through P perpendicular to the x-axis to meet it at X and second line is drawn through P perpendicular to the y-axis to meet it at Y. The coordinates of  P are  X  and Y interpreted as numbers x and y on the corresponding number lines. The coordinates are written as an ordered pair (x, y). The value of x is called the x-coordinate or abcissa and the value of y is called the y-coordinate or ordinate.

Gradient  the slope or gradient of a line describes its steepness, incline, or grade. A higher slope value indicates a steeper incline. The slope is (in the simplest of terms) the measurement of a line, and is defined as the ratio of the "rise" divided by the "run" between two points on a line .

Example Suppose a line runs through two points: A(3, 2) and B(8, 4) . By dividing the difference in y-coordinates by the difference in x-coordinates, one can obtain the slope of the line:

Linear Function Formula : y = mx + c Ax + By + C = 0 Point slope formula, throughs (x1, y1) with m : The Secant line between two points(x1, y1) dan (x2, y2) dengan

Example (1) (form : y =mx +c) (form : Ax+By+C=0) Suppose a line runs through two points: (-4, 2) and (6, -1) . 1st Way : Gradien : If through (-4, 2) then : (form : y =mx +c) (form : Ax+By+C=0)

2nd way : form: Ax + By + C = 0 form : y = mx + C

Example (2) Through (6, -1)

Lines Parallel lines parallel lines have the same slope — and lines with the same slope are parallel. m1=m2 Perpendicular lines If you visualize a line with positive slope, then the perpendicular line must have negative slope So perpendicular slopes have opposite signs. m1.m2 = - 1

Hubungan Dua Garis x- dan y- Intercepts : an x-intercept is a point in the equation where the y-value is zero, and a y-intercept is a point in the equation where the x-value is zero.

Example One line passes through the points (–1, –2) and (1, 2); another line passes through the points (–2, 0) and (0, 4). Are these lines parallel, perpendicular, or neither? Since these two lines have identical slopes, then these lines are parallel.

One line passes through the points (0, –4) and (–1, –7); another line passes through the points (3, 0) and (–3, 2). Are these lines parallel, perpendicular, or neither?   If I were to flip the "3" and then change its sign, I would get " –1/3". In other words, these slopes are negative reciprocals, so the lines through the points are perpendicular.

One line passes through the points (–4, 2) and (0, 3); another line passes through the points (–3,-2 )  and (3, 2) Are these lines parallel, perpendicular, or neither?

Example : Find the x- and y- intercepts of 25x2 + 4y2 = 9 Using the definitions of the intercepts, I will proceed as follows: x-intercept(s): y = 0 for the x-intercept(s), so: 25x2 + 4y2 = 9  25x2 + 4(0)2 = 9  25x2 + 0 = 9  x2 =  9/25  x = ± ( 3/5 ) Then the x-intercepts are the points ( 3/5, 0) and ( –3/5, 0) y-intercept(s):    x = 0 for the y-intercept(s), so: 25x2 + 4y2 = 9  25(0)2 + 4y2 = 9  0 + 4y2 = 9  y2 =  9/4  y = ± ( 3/2 ) Then the y-intercepts are the points (0, 3/2 ) and (0, –3/2 )

Examples : Graph y = (–5/3)x – 2 T-chart Graph

Drawn line equation: y = –2x + 3 the number on x is the slope, so m = –2 for this line. If, say, x = 0, then y = –2(0) + 3 = 0 + 3 = 3. Then the point (0, 3) is on the line

Graph y = 3 It doesn't matter what x-value you pick; you will always be 3.

Problem : Drawn : Graph y = 2x Graph 4x – 3y = 12

garis y = 2x 4x – 3y = 12

Menggambar Grafik Persamaan Kuadrat (Parabola) Untuk menggambar suatu persamaan kuadrat, ikuti tiga langkah berikut : Tentukan titik-titik potong dengan sumbu-sumbu koordinat : Titik potong dengan sumbu x, syaratnya y = 0 Titik potong dengan sumbu y, syaratnya x = 0 2. Tentukan titik balik/puncak parabola, titik puncak dilalui sumbu simetri, koordinatnya adalah : dimana 3. Gambarkan beberapa titik lagi untuk membantu mempermudah penggambaran, kemudian hubungkan titik-titik tersebut dengan sebuah kurva mulus.

Find new equality that’s through (6, 8) and paralel with 3x – 5y = 11 3x - 5y = 11 or , m = 3/5  m2 = 3/5 2nd line : through (6, 8) and m2 = 3/5

5y = 3x + 22 atau 3x – 5y + 22 = 0

The Distance Formula Distance between A dan B : Example : Find the distance between the points  A (-2, 3) dan B (4, -1)

Jarak Titik Ke Garis Distance between T(x1 ,y1) to Ax + By + C = 0 adalah : Example : Find the distance between the points A (1, 2) to 4x + 5y + 8 = 0

Latihan Tentukan gradien garis yang melalui titik (2, -4) dan (0,-6) Tentukan persamaan garis : Melalui titik (2, 3) dengan kemiringan 4 Melalui titik (2, 3) dan (4, 8) 3. Tuliskan persamaan garis melalui (3, -3) yang : Sejajar garis 2x + 3y = 6 Tegak lurus garis 2x + 3y = 6 Sejajar garis yang melalui titik (-1, 2) dan (3, -1) 4. Tentukan persamaan garis yang melalui titik potong garis-garis 2x + 3y = 4 dan -3x + y = 5 dan tegak lurus dengan garis pertama. 5. Diketahui titik A(1, 2), B(3, -4), dan C(-2, 0). Tentukan persamaan garis yang melalui titik A dan sejajar garis BC.