DOSEN Fitri Yulianti, SP, MSi.

Slides:



Advertisements
Presentasi serupa
FUNGSI LINEAR NUR MINDARWATI 2013.
Advertisements

Hubungan Non-linear
Hubungan Linear
Matematika Dasar Oleh Ir. Dra. Wartini, M.Pd.
SISTEM PERSAMAAN LINEAR DUA VARIABEL (SPLDV)
ALJABAR LINEAR DAN MATRIKS
Sistem Persamaan Linier dan kuadrat
FUNGSI Cherrya Dhia Wenny, S.E..
By Eni Sumarminingsih, SSi, MM
PERSAMAAN GARIS PROGRAM STUDI PENDIDIKAN MATEMATIKA Oleh Kelompok 4 :
BAB V (lanjutan) VEKTOR.
BAB V (lanjutan) VEKTOR.
Hubungan Non-linear.
FAKTORISASI SUKU ALJABAR
Pengertian garis Lurus Koefisien arah/gradien/slope
QUIZ Diketahui vektor a, b, dan c:
Persamaan Linear Dua Variabel Di susun oleh : Dede yusuf Fikri fadhilah Yogi setiawan Firda maulani rifa.
HUBUNGAN NON LINIER.
ALJABAR LINIER WEEK 1. PENDAHULUAN
SISTEM PERSAMAAN LINEAR DUA VARIABEL (SPLDV) - 1
Pertemuan 4 Fungsi Linier.
HUBUNGAN LINIER.
MATEMATIKA BISNIS Sri Nurmi Lubis, S. Si
Sistem Persamaan Linier Dua Variabel ( SPLDV
Assalaamu’alaikum Wr. Wb
NILAI MUTLAK PERSAMAAN GARIS FUNGSI
PERTEMUAN Ke- 4 Dosen pengasuh: Moraida Hasanah, S.Si., M.Si
OPERASI VEKTOR Pertemuan 3
LATIHAN SK dan KD CONTOH SOAL PEMBAHASAN
PENERAPAN FUNGSI LINIER DALAM BIDANG EKONOMI
MATEMATIKA EKONOMI Pertemuan 9: Fungsi Non-Linier Dosen Pengampu MK:
SISTEM PERSAMAAN LINEAR
1.4 SISTEM KOORDINAT EMPAT BIDANG
Persamaan Linear Dua Variabel
Adakah yang masih ingat ini gambar apa ?
Matematika SMA Kelas X Semester 1 Oleh : Ndaruworo
04 SESI 4 MATEMATIKA BISNIS Viciwati STl MSi.
MATEMATIKA EKONOMI Pertemuan 9: Fungsi Non-Linier Dosen Pengampu MK:
Sistem Persamaan Linier dan kuadrat
Lidya Citra Divantari PMTK 5 C
MATEMATIKA EKONOMI Pertemuan 4: Fungsi Linier Dosen Pengampu MK:
MENU KD Indikator materi RAHMIATI latihan VIDEO KUIS.
SISTEM PERSAMAAN LINEAR DAN KUADRAT
MATEMATIKA EKONOMI Pertemuan 4: Fungsi Linier Dosen Pengampu MK:
SISTEM PERSAMAAN LINEAR DUA VARIABEL
SISTEM PERSAMAAN LINEAR DAN KUADRAT
Pertemuan ke-7 FUNGSI LINIER.
SISTEM PERSAMAAN LINEAR DUA VARIABEL ( SPLDV )
DAN PENERAPANNYA DALAM
MATEMATIKA EKONOMI Pertemuan 9: Fungsi Non-Linier Dosen Pengampu MK:
Pertidaksamaan Linier
Sistem Persamaan Linier dan kuadrat
Assalamu'alaikum Wr.Wb.
Grafik Fungsi Aljabar next
Sistem Persamaan Linier dan kuadrat
MATEMATIKA EKONOMI FUNGSI LINIER (Pertemuan)
Peta Konsep. Peta Konsep A. Menggambar dan Menghitung Jarak.
Peta Konsep. Peta Konsep B. Kedudukan Dua Garis.
Pertemuan 2 – Pendahuluan 2
A. Sistem Persamaan Linier dan Kuadrat
Peta Konsep. Peta Konsep B. Kedudukan Dua Garis.
by Eni Sumarminingsih, SSi, MM
Peta Konsep. Peta Konsep B. Sistem Persamaan Kuadrat dan Kuadrat.
Peta Konsep. Peta Konsep A. Sistem Persamaan Linier dan Kuadrat.
B. Sistem Persamaan Kuadrat dan Kuadrat
Bab 2 Fungsi Linier.
PERTEMUAN Ke- 5 Matematika Ekonomi I
Oleh NATALIA PAKADANG ( ). SISTEM PERSAMAAN LINEAR DUA VARIABEL Bentuk umum : dimana : a1, a2, b1, b2, c1, c2 adalah bilangan riil. a dan b ≠0.
Peta Konsep. Peta Konsep A. Sistem Persamaan Linier dan Kuadrat.
SISTEM PERSAMAAN LINEAR
Transcript presentasi:

DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 PERSAMAAN LINIER 2 DOSEN Fitri Yulianti, SP, MSi.

HUBUNGAN DUA GARIS LURUS Dalam sistem sepasang sumbu silang, dua buah garis lurus mempunyai empat macam kemungkinan bentuk hubungan yang : berimpit, sejajar, berpotongan dan tegak lurus.

Berimpit : y1 = ny2 a1 = na2 b1 = nb2 y1 = a1 + b1x y2 = a2 + b2x Sejajar : a1 ≠ a2 b1 = b2 y1 = a1 + b1x y2 = a2 + b2x

y1 = a1 + b1x Berpotongan : b1 ≠ b2 y2 = a2 + b2x Tegak Lurus : b1 = - 1/b2 y1 = a1 + b1x y2 = a2 + b2x

PENCARIAN TITIK PERPOTONGAN DUA PERSAMAAN LINEAR Pencarian titik perpotongan dapat dilakukan melalui tiga macam cara : cara substitusi cara eliminasi cara determinan

Cara Substitusi Dua persamaan dengan dua bilangan tertentu dapat diselesaikan dengan cara menyelesaikan terlebih dahulu sebuah persamaan untuk salah satu bilangan tertentu, kemudian mensubstitusikannya ke dalam persamaan yang lain. Contoh : Carilah titik perpotongan x dan y dari dua persamaan berikut: Persamaan I 2x + 3y = 21 dan Persamaan II x + 4y = 23

Cara Substitusi Persamaan I 2x + 3y = 21 dan Persamaan II x + 4y = 23 untuk persamaan II ubah posisi persamaan sehingga x berdiri sendiri dan diperoleh nilai Persamaan II x = 23 - 4y, kemudian masukkan nilai x pada persamaan II tersebut pada persamaan I 2x + 3y = 21 2x + 3y = 21 2(23 – 4y) + 3y = 21 2x + 3x5 = 21 46 – 8y + 3y = 21 2x +15 = 21 46 – 5y = 21 2x = 21 - 15 25 = 5y 2x = 6 y = 25/5 = 5 x = 6/2 = 3 Titik perpotongan (x,y) = (3,5) 7

Cara Eliminasi Dua persamaan dengan dua bilangan tertentu dapat dicari titik perpotongan x dan y dengan cara menghilangkan untuk sementara (mengeliminasi) salah satu dari bilangan tertentu yang ada, sehingga dapat dihitung nilai dari bilangan tertentu yang lain. x + 4y = 23 x + 4x5 = 23 x = 23 – 20 x = 3 Jadi titik perpotongan (x,y) = (3,5)

Soal: Cari nilai titik perpotongan x dan y dengan cara substitusi dan eliminasi: a. x + y = 2 dan 2x + y = 1 b. 3x + 2y = 6 dan 4x = 2y + 6 c. 5y + 3x = 4 dan y = - 2x + 2 d. y = 5x + 6 dan y = 3x e. 2x - 4y = 12 dan y = - 1x + 3

Cara Determinan Cara determinan bisa digunakan untuk menyelesaikan persamaan yang jumlahnya banyak. Determinan secara umum dilambangkan dengan notasi

Penyelesaian untuk x dan y dapat dilakukan : Ada 2 persamaan : ax + by = c dx + ey = f Penyelesaian untuk x dan y dapat dilakukan : Determinan

Contoh : 2x + 3y = 21 dx + 4y = 23 Penyelesaian untuk x dan y dapat dilakukan :