PRESENTASI BAHAN AJAR OLEH DRS. AHMAD DAABA SMA NEGERI 4 KENDARI
Presentasi Matematika KEDUDUKAN TITIK, GARIS, DAN BIDANG DALAM RUANG PLAY ALL Sk,kd dan indikator chapters CREDITS Presented by : Ahmad Daaba, sman 4 Kendari .2008
SK DAN KD Standar Kompetensi Kompetensi Dasar Kedudukan Titik, Garis, dan Bidang dalam Ruang SK DAN KD Standar Kompetensi 6. Menentukan kedudukan, jarak, dan besar sudut yang melibatkan titik, garis, dan bidang dalam ruang dimensi tiga Kompetensi Dasar 6.1 Menentukan kedudukan titik, garis, dan bidang dalam ruang dimensi tiga
INDIKATOR Setelah mempelajari materi ini siswa diharapkan dapat : Kedudukan Titik, Garis, dan Bidang dalam Ruang INDIKATOR Setelah mempelajari materi ini siswa diharapkan dapat : Menentukan kedudukan titik dan garis dalam ruang Menentukan kedudukan titik dan bidang dalam ruang Menentukan kedudukan antara dua garis dalam ruang Menentukan kedudukan garis dan bidang dalam ruang Menentukan kedudukan antara dua bidang dalam ruang
Kedudukan Titik, Garis, dan Bidang dalam Ruang CONTENTS Chapter 1 : Pengertian Titik, Garis, dan Bidang + Aksioma Euclides Chapter 2 : Kedudukan Titik Terhadap Garis dan Bidang Chapter 3 : Kedudukan Garis Terhadap Garis dan Bidang Chapter 4 : Kedudukan Bidang Terhadap Bidang Lain
Pengertian Titik, Garis, dan Bidang + Aksioma Euclides Titik hanya dapat ditentukan oleh letaknya, tidak berukuran (tidak berdimensi). Titik digambarkan dengan tanda noktah dan dibubuhi nama, biasanya dengan huruf kapital. Contoh P A Titik A Titik P
Pengertian Titik, Garis, dan Bidang + Aksioma Euclides Garis (garis lurus) memiliki ukuran panjang, tetapi tak punya ukuran lebar. Biasanya garis hanya dilukiskan sebagian saja, disebut wakil garis. Nama wakil garis dilambangkan dengan huruf kecil (g, h, k) atau menyebutkan nama segmen garis dari titik pangkal ke titik ujung. Contoh B g A Segmen/ ruas garis AB Garis g
Pengertian Titik, Garis, dan Bidang + Aksioma Euclides Bidang (Bidang datar) memiliki ukuran panjang dan lebar. Wakil bidang berbentuk persegi, persegi panjang, atau jajar genjang, diberi nama α, β, µ atau H, U, V, W, atau dengan menyebutkan titik-titik sudut bidang tersebut. Contoh D C D C α β A B A B Bidang α Bidang ABCD Bidang β Bidang ABCD D C µ A B Bidang µ Bidang ABCD
AKSIOMA EUCLIDES Pengertian Titik, Garis, dan Bidang + Aksioma Euclides Aksioma adalah pernyataan yang diandaikan benar dalam sebuah sistem dan kebenaran itu diterima tanpa pembuktian. Euclides, memperkenalkan 3 aksioma penting dalam geometri Aksioma 1 Melalui dua buah titik sebarang (tidak berimpit) hanya dapat dibuat sebuah garis lurus. B A Aksioma 2 Jika sebuah garis dan sebuah bidang mempunyai dua buah titik persekutuan, maka garis tersebut seluruhnya terletak pada bidang A B α Aksioma 3 Melalui tiga buah titik sebarang (tidak pada satu garis) hanya dapat dibuat sebuah bidang. C α A B
BIDANG Pengertian Titik, Garis, dan Bidang + Aksioma Euclides C Dalil 1 Sebuah bidang ditentukan oleh tiga titik sebarang. A B Dalil 2 Sebuah bidang ditentukan oleh sebuah garis dan sebuah titik (titik berada di luar garis). g A h Dalil 3 Sebuah bidang ditentukan oleh dua buah garis berpotongan. g h Dalil 4 Sebuah bidang ditentukan oleh dua buah garis sejajar g
Kedudukan Titik Terhadap Garis KEDUDUKAN TITIK TERHADAP GARIS DAN BIDANG KEDUDUKAN TITIK Kedudukan Titik Terhadap Garis H G 1. Titik terletak pada garis E F A D 2. Titik berada di luar garis C B g A B
Kedudukan Titik Terhadap Bidang KEDUDUKAN TITIK TERHADAP GARIS DAN BIDANG KEDUDUKAN TITIK Kedudukan Titik Terhadap Bidang H G 1. Titik terletak pada bidang E F A U D 2. Titik berada di luar bidang C A B U B
KEDUDUKAN GARIS Kedudukan garis terhadap garis lain KEDUDUKAN GARIS TERHADAP GARIS DAN BIDANG KEDUDUKAN GARIS Kedudukan garis terhadap garis lain h g Dua garis berpotongan Ada satu titik persekutuan (titik potong) A α g Dua garis berimpit Ada lebih dari satu titik persekutuan h α h Dua garis bersilangan Tidak berpotongan, tidak bersilangan, tidak terletak pada satu bidang A g α
KEDUDUKAN GARIS Dua garis sejajar KEDUDUKAN GARIS TERHADAP GARIS DAN BIDANG KEDUDUKAN GARIS Dua garis sejajar Tak ada titik persekutuan, dalam satu bidang g h α Aksioma 4 Melalui sebuah titik yang berada di luar sebuah garis, hanya dapat dibuat sebuah garis yang sejajar dengan garis itu. A h g α
KEDUDUKAN GARIS g berpotongan dengan AD, AE, BC, dan BF KEDUDUKAN GARIS TERHADAP GARIS DAN BIDANG KEDUDUKAN GARIS H G g berpotongan dengan AD, AE, BC, dan BF E F g sejajar dengan DC, EF, dan HG g bersilangan dengan CG, DH, EH, dan FG D C g berimpit dengan AB A B g
KEDUDUKAN GARIS Dalil tentang dua garis sejajar Dalil 5 k // l l // m KEDUDUKAN GARIS TERHADAP GARIS DAN BIDANG KEDUDUKAN GARIS Dalil tentang dua garis sejajar Dalil 5 k // l l // m Maka, k // m m k l g Dalil 6 k // l k dan l memotong g Maka, k, l, dan g terletak dalam satu bidang k l α α Dalil 7 k // l l menembus bidang α Maka, k menembus bidang α k l
KEDUDUKAN GARIS Kedudukan garis terhadap bidang KEDUDUKAN GARIS TERHADAP GARIS DAN BIDANG KEDUDUKAN GARIS Kedudukan garis terhadap bidang g B Garis terletak pada bidang Dua atau lebih titik persekutuan A α g Garis sejajar bidang Tidak terdapat titik persekutuan α g Garis memotong bidang Ada satu titik persekutuan (titik tembus) A α
Garis yang terletak di bidang ABCD adalah AB, AD, CD, dan BC KEDUDUKAN garis terhadap garis dan bidang KEDUDUKAN GARIS H G E F Garis yang memotong bidang ABCD adalah AE, FB, CG, dan DH Garis yang sejajar dengan bidang ABCD adalah EF, GH, EH, dan FG D C A B Garis yang terletak di bidang ABCD adalah AB, AD, CD, dan BC
KEDUDUKAN GARIS Dalil tentang garis sejajar bidang Dalil 8 g // h KEDUDUKAN GARIS TERHADAP GARIS DAN BIDANG KEDUDUKAN GARIS Dalil tentang garis sejajar bidang g Dalil 8 g // h h terletak pada bidang α Maka, g // bidang α h α g Dalil 9 α melalui g g // bidang β Maka, (a, β) // g (a,β) α β
KEDUDUKAN GARIS Dalil 10 g // h h // bidang α Maka, g // bidang α α KEDUDUKAN GARIS TERHADAP GARIS DAN BIDANG KEDUDUKAN GARIS g h Dalil 10 g // h h // bidang α Maka, g // bidang α α g Dalil 11 α berpotongan dengan β a // g β // g Maka, (a, β) // g (a,β) α β
KEDUDUKAN BIDANG Dua bidang berimpit Dua bidang sejajar α KEDUDUKAN BIDANG terhadap bidang lain KEDUDUKAN BIDANG Dua bidang berimpit (a,β) Dua bidang sejajar Tak punya titik persekutuan α β (a,β) Dua bidang berpotongan Memiliki satu garis persekutuan (garis potong) α β
KEDUDUKAN BIDANG ABCD sejajar dengan EFGH KEDUDUKAN bidang TERHADAP bidang lain KEDUDUKAN BIDANG H G ABCD sejajar dengan EFGH E F D C ABCD berpotongan dengan ABFE, BCGF, CDHG, dan ADHE A B
KEDUDUKAN BIDANG Dalil 12 a // g b // h KEDUDUKAN BIDANG terhadap bidang lain KEDUDUKAN BIDANG a Dalil 12 a // g b // h a dan b berpotongan pada bidang α g dan h berpotongan pada bidang β Maka, bidang α // bidang β b α g h β (α,µ) Dalil 13 bidang α // bidang β Bidang µ memotong bidang α dan β Maka, (α,µ) // (β,µ) µ α (β,µ) β
KEDUDUKAN BIDANG Dalil 14 g menembus α α bidang α // bidang β KEDUDUKAN BIDANG terhadap bidang lain KEDUDUKAN BIDANG g Dalil 14 g menembus α bidang α // bidang β Maka, g menembus bidang β α β Dalil 15 g // bidang α Bidang α // bidang β Maka, g // bidang β g α β
KEDUDUKAN BIDANG Dalil 16 g terletak di bidang α bidang α // bidang β KEDUDUKAN BIDANG terhadap bidang lain KEDUDUKAN BIDANG Dalil 16 g terletak di bidang α bidang α // bidang β Maka, g // bidang β g α β Dalil 17 bidang α // bidang β Bidang µ memotong bidang α Maka, Bidang µ memotong bidang β µ α β
KEDUDUKAN BIDANG α Dalil 18 bidang α // bidang β bidang β // bidang µ KEDUDUKAN BIDANG terhadap bidang lain KEDUDUKAN BIDANG α Dalil 18 bidang α // bidang β bidang β // bidang µ Maka, Bidang α // bidang µ β µ Dalil 19 bidang α // bidang U Bidang β // bidang V Bidang α dan bidang β berpotongan di (α,β) Bidang U dan bidang V berpotongan di (U,V) Maka, (α,β) // (U,V) (U,V) U (a,β) V α β
CONTOH SOAL H G Temukan titik-titik yang terletak pada a. Garis BD Kedudukan Titik, Garis, dan Bidang dalam Ruang CONTOH SOAL H G Temukan titik-titik yang terletak pada a. Garis BD b. Bidang BCGF c. Bidang ABGH F E D C 2. Carilah garis-garis yang sejajar dengan a. Bidang ABCD b. bidang BCGF c. Bidang ABGH A B 3. Carilah garis-garis yang tegak lurus dengan garis a. AB b. BF
SEKIAN DAN TERIMA KASIH ATAS PERHATIANNYA