Pengujian Hipotesis (I) Pertemuan 11

Slides:



Advertisements
Presentasi serupa
Pengujian Hipotesis.
Advertisements

Pendugaan Parameter.
Chapter 11 k- Fold Cross Validation
Topik 8 Pengujian Hipotesis (Hypothesis Testing)
BUDIYONO Program Pascasarjana UNS
BUDIYONO Program Pascasarjana UNS
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Bina Nusantara Model Simulasi Peretemuan 23 (Off Clas) Mata kuliah: K0194-Pemodelan Matematika Terapan Tahun: 2008.
Pertemuan 05 Sebaran Peubah Acak Diskrit
Ruang Contoh dan Peluang Pertemuan 05
Pendugaan Parameter Proporsi dan Varians (Ragam) Pertemuan 14 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 10 Statistical Reasoning Matakuliah: T0264/Inteligensia Semu Tahun: Juli 2006 Versi: 2/1.
Population and sample. Population is complete actual/theoretical collection of numerical values (scores) that are of interest to the researcher. Simbol.
1 Pertemuan 10 Fungsi Kepekatan Khusus Matakuliah: I0134 – Metode Statistika Tahun: 2007.
PENDUGAAN PARAMETER Pertemuan 7
Uji Goodness of Fit : Distribusi Multinomial
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
MULTIPLE REGRESSION ANALYSIS THE THREE VARIABLE MODEL: NOTATION AND ASSUMPTION 08/06/2015Ika Barokah S.
Statistika Mulaab,S,si M.kom Lab CAI Teknik Informatika xxxx Website Kuliah : mulaab.wordpress.com.
Sebaran Peluang Kontinu (I) Pertemuan 7 Matakuliah: I0014 / Biostatistika Tahun: 2008.
1 Pertemuan #2 Probability and Statistics Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
DISTRIBUSI PROBABILITA KONTINU
1 Pertemuan #3 Probability Distribution Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
1 Pertemuan 24 Matakuliah: I0214 / Statistika Multivariat Tahun: 2005 Versi: V1 / R1 Analisis Struktur Peubah Ganda (IV): Analisis Kanonik.
1 Minggu 10, Pertemuan 20 Normalization (cont.) Matakuliah: T0206-Sistem Basisdata Tahun: 2005 Versi: 1.0/0.0.
Sebaran Peluang Kontinu (II) Pertemuan 8 Matakuliah: I0014 / Biostatistika Tahun: 2008.
Ukuran Pemusatan dan Lokasi Pertemuan 03 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
STATISTICAL INFERENCE PART VI HYPOTHESIS TESTING 1.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 11-1 Chapter 11 Analysis of Variance Basic Business Statistics 10 th Edition.
PROBABILITY DISTRIBUTION
Statistik TP A Pengujian Hipotesis Satu Populasi (Mean dan Proporsi)
Uji Goodness of Fit : Distribusi Multinomial
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Distribusi Sampling Juweti Charisma.
PENGUJIAN HIPOTESIS RATA-RATA & PROPORSI DUA POPULASI
Statistika Chapter 4 Probability.
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Uji Hipotesis Dua Sampel
Pertemuan 25 Uji Kesamaan Proporsi
Presentasi Statistika Dasar
Pendugaan Parameter (I) Pertemuan 9
Sebaran Normal Ganda (I)
PENDUGAAN PARAMETER Pertemuan 8
the formula for the standard deviation:
Significantly Significant
Sebaran Peluang (II) Pertemuan 4
t(ea) for Two Tests Between the Means of Different Groups
T(ea) for Two Again Tests Between the Means of Related Groups
Inferensi Dua Nilaitengah Ganda (V)
Pendugaan Parameter (II) Pertemuan 10
Analisis Ragam Peubah Ganda (MANOVA III)
Pengujian Kesetangkupan (II) Pertemuan 14
Uji Kesamaan Proporsi dan Uji Kebebasan Pertemuan 24
Pertemuan Kesembilan Analisa Data
Pertemuan Kesepuluh Data Analysis
Pertemuan 09 Pengujian Hipotesis 2
Research methodology and Scientific Writing W#8
Fungsi Kepekatan Peluang Khusus Pertemuan 10
An Introducation to Inferential Statistics
Eksperimen Satu Faktor: (Disain RAL)
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Uji Hipotesis Dua Sampel
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
STATISTIK “Hypothesis Testing”
TEORI PROBABILITAS by WAHYUYANTI (WYT)
TWO SAMPLE TEST OF HYPOTHESIS
KULIAH KE 9 Elementary Statistics Eleventh Edition
Probability IIntroduction to Probability ASatisfactory outcomes vs. total outcomes BBasic Properties CTerminology IICombinatory Probability AThe Addition.
Hypothesis Testing Niniet Indah Arvitrida, ST, MT SepuluhNopember Institute of Technology INDONESIA 2008.
Transcript presentasi:

Pengujian Hipotesis (I) Pertemuan 11 Matakuliah : I0014 / Biostatistika Tahun : 2008 Pengujian Hipotesis (I) Pertemuan 11

Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa dapat menjelaskan konsep pengujian hipotesis (C2) Mahasiswa dapat menguji hipotesis untuk nilai tengah (C3) Bina Nusantara

Outline Materi Pendugaan Nilai tengah Pendugaan beda dua nilai tengah Bina Nusantara

Pengujian Hipotesis A null hypothesis, denoted by H0, is an assertion about one or more population parameters. This is the assertion we hold to be true until we have sufficient statistical evidence to conclude otherwise. H0: =100 The alternative hypothesis, denoted by H1, is the assertion of all situations not covered by the null hypothesis. H1: 100 H0 and H1 are: Mutually exclusive Only one can be true. Exhaustive Together they cover all possibilities, so one or the other must be true. Bina Nusantara

Logika Pengujian Hipotesis A contingency table illustrates the possible outcomes of a statistical hypothesis test. Bina Nusantara

Kesalahan dalam Uji Hipotesis A decision may be incorrect in two ways: Type I Error: Reject a true H0 The Probability of a Type I error is denoted by .  is called the level of significance of the test Type II Error: Accept a false H0 The Probability of a Type II error is denoted by . 1 -  is called the power of the test.  and  are conditional probabilities: Bina Nusantara

Pengujian Mean Populasi (n besar) Critical Points of z Bina Nusantara

Pengujian Mean Populasi (n kecil) When the population is normal, the population standard deviation,, is unknown and the sample size is small, the hypothesis test is based on the t distribution, with (n-1) degrees of freedom, rather than the standard normal distribution. Small - sample tes t statisti c for the population mean, : t = x s n When the p opulation is normall y distribu ted and th e null hypothesis is true, the test statistic has a distribut ion with degrees o f freedom m 1 Bina Nusantara

Uji mean berpasangan (pair t test) Bina Nusantara

Uji Mean Dua Populasi Independen When paired data cannot be obtained, use independent random samples drawn at different times or under different circumstances. Large sample test if: Both n1  30 and n2  30 (Central Limit Theorem), or Both populations are normal and 1 and 2 are both known Small sample test if: Both populations are normal and 1 and 2 are unknown Bina Nusantara

Situasi Pengujian Dua Mean Populasi I: Difference between two population means is 0 H0: 1 -2 = 0 H1: 1 -2  0 II: Difference between two population means is less than 0 H0: 1 -2  0 H1: 1 -2  0 III: Difference between two population means is less than D H0: 1 -2  D H1: 1 -2  D Bina Nusantara

Statistik Uji Dua Mean Populasi Large-sample test statistic for the difference between two population means: The term (1- 2)0 is the difference between 1 an 2 under the null hypothesis. Is is equal to zero in situations I and II, and it is equal to the prespecified value D in situation III. The term in the denominator is the standard deviation of the difference between the two sample means (it relies on the assumption that the two samples are independent). Bina Nusantara

Uji Dua Mean Populasi dengan Ukuran Contoh Kecil When sample sizes are small (n1< 30 or n2< 30 or both), and both populations are normally distributed, the test statistic has approximately a t distribution with degrees of freedom given by (round downward to the nearest integer if necessary): Bina Nusantara

Menggunakan Ragam gabungan (Pooled Variance) Bina Nusantara

Penutup Sampai saat ini Anda telah mempelajari pengujian hipotesis nilai tengah, baik untuk satu populasi maupun dua populasi Untuk dapat lebih memahami penggunaan pengujian hipotesis tersebut, cobalah Anda pelajari materi penunjang, dan mengerjakan latihan Bina Nusantara