Probabilitas Oleh Azimmatul Ihwah.

Slides:



Advertisements
Presentasi serupa
Populasi Dan Sampel Pertemuan 8.
Advertisements

POPULASI DAN SAMPEL.
POPULASI DAN SAMPEL ANANDA RIZVIETHA A
Pendahuluan Tujuan yang umum dan penting: mempelajari suatu kelompok besar (populasi) dengan cara melakukan pengujian data dari beberapa anggota kelompok.
POPULASI DAN SAMPEL.
Statistik (Populasi dan Sampel)
POPULASI, SAMPEL By. Raharjo
POPULASI DAN SAMPEL.
11. MENENTUKAN SUMBER DATA
Metode Sampling.
TEORI PROBABILITAS.
Methods of Sampling.
POPULASI DAN TEKNIK PENARIKAN SAMPEL
Pertemuan 3-4 Metode sampling
TEKNIK SAMPLING MODUL: 7
Pertemuan 05 Sebaran Peubah Acak Diskrit
POPULASI & SAMPEL PENELITIAN
SAMPLING POPULASI & SAMPEL TEKNIK SAMPLING JUMLAH SAMPEL.
METODOLOGI PENELITIAN Dr. Agung Martono
DISTRIBUSI PELUANG & SAMPLING
SAMPEL DAN POPULASI ADHI GURMILANG.
POPULASI DAN TEKNIK SAMPLING
11. MENENTUKAN SUMBER DATA
Teknik Pengambilan Sampel
Populasi dan sampel Rezqi Handayani, S.Farm.,M.P.H., Apt
Metoda Pengambilan sampel
POPULASI DAN SAMPEL.
Pertanyaan minggu ini Apa beda populasi dengan sampel?
BIO STATISTIKA JURUSAN BIOLOGI
Matematika Diskrit bab 2-Himpunan
Pendahuluan Tujuan yang umum dan penting: mempelajari suatu kelompok besar (populasi) dengan cara melakukan pengujian data dari beberapa anggota kelompok.
Materi 11 METODE DAN DISTRIBUSI SAMPLING
TEKNIK SAMPLING Oleh : Herry Yulistiyono, MSi.
DEFINISI DAN TEKNIK SAMPLING Oleh : Inne Novita Sari, M.Si.
Pengambilan Sampel Probabilitas
1 X1 X2 Y Y1 MODUL PERKULIAHAN SESI 2
Matematika Diskrit bab 2-Himpunan
Pengertian Statistika Pengertian dan Penggunaan
DISTRIBUSI PELUANG & SAMPLING
METODE DISTRIBUSI DAN SAMPLING
Statistika Chapter 4 Probability.
Materi ajar Populasi dan Sampel : 1. Probability Sampling
KONSEP DASAR PROBABILITAS
PROBABILITAS.
POPULASI DAN SAMPEL.
POPULASI DAN SAMPEL.
Matematika Diskrit Himpunan Sri Nurhayati.
Matematika Diskrit (1) Himpunan.
POPULASI & SAMPEL Populasi Sampel &.
Matematika Diskrit bab 2-Himpunan
POPULASI DAN SAMPEL mustikalukmanarief
SAMPLING & DISTRIBUSI SAMPLING
PELUANG Peluang Kejadian Frekuensi Harapan Peluang Komplemen Kejadian
DEFINISI DAN TEKNIK SAMPLING Oleh : Inne Novita Sari, M.Si.
Matematika Diskrit Himpunan
TEKNIK SAMPLING.
HIMPUNAN Himpunan : kumpulan benda atau objek yang didefinisikan secara jelas. Kelompok berikut yang merupakan himpunan adalah : 1. Kelompok siswa cantik.
1 X1 X2 Y Y1 MODUL PERKULIAHAN SESI 2
POPULASI DAN SAMPEL.
Matematika Diskrit Himpunan Sri Nurhayati.
Metodologi Penelitian
Pertemuan IX Populasi dan Sampel.
Populasi dan Sampel Pertemuan 05
POPULASI DAN SAMPEL KELOMPOK 1 FATHIN AMMAR ASIDIK ENDAH MARIADI
Populasi Sampel &.
PROBABILITAS.
Teknik Sampling dalam Penelitian Kuantitatif
11. MENENTUKAN SUMBER DATA
Pertemuan VI Populasi dan Sampel.
PROBABILITY & STATISTICS
Transcript presentasi:

Probabilitas Oleh Azimmatul Ihwah

Teori Probabilitas Life is full of uncertainty Dimana terkadang kita tidak tahu apa yang akan terjadi semenit kemudian. Namun suatu kejadian dapat diperkirakan lebih sering terjadi daripada kejadian yang lain. Contohnya hujan akan lebih sering turun di daerah Bogor dibandingkan dengan Samarinda.

Teori Probabilitas Munculnya teori probabilitas berawal dari tempat judi. Banyak para penjudi dahulu kala bertanya bagaimana caranya memenangkan perjudian pada para matematikawan. Tetapi pada masa sekarang ilmu probabilitas banyak dimanfaatkan dalam berbagai bidang, contohnya peramalan curah hujan, penentuan harga saham

Eksperimen, Ruang Sampel dan Kejadian Eksperimen merupakan setiap proses yang menghasilkan data mentah (raw data). Ruang sampel adalah himpunan semua peristiwa yang terjadi dalam eksperimen. Kejadian adalah jika dalam suatu eksperimen kita tertarik pada satu β€˜kejadian’ saja. Contoh eksperimen pengambilan bola dalam kotak dimana kesepuluh bola yang ada diberi nomor 1-10. Ruang sampel disimbolkan dengan S = {1,2,3,…,10}. Jika A merupakan himpunan bola bernomor prima, maka A = {2,3,5,7} yg merupakan subset dari S dan A merupakan kejadian dalam ruang sampel S.

Banyaknya anggota dalam ruang sampel disimbolkan dengan n(S) Banyak anggota dalam kejadian A disimbolkan dengan n(A)

Ruang Sampel Diskrit dan Ruang Sampel Kontinu Ruang sampel kontinu bila anggotanya berada dalam interval. Contoh S = {x|10<x<11}, S = {x|x>0} Ruang sampel diskrit bila anggotanya terhitung. Contoh S = {rendah,tinggi,sedang}, S = {2,4,6,8,10}

Diagram Pohon (Tree Diagrams) KASUS: suatu pesan penting akan dikirimkan kepada pimpinan dengan cara berantai. Orang pertama akan mengirimkan ke orang kedua, orang kedua mengirim pesan ke orang ketiga dan orang ketiga akan langsung menyampaikan pesan ke pimpinan. Jika sifat pengiriman pesan dari orang 1 ke orang berikutnya adalah terlambat atau on time, untuk memudahkan pendataan ruang sampel dapat terlebih dahulu membuat diagram pohon

Diagram pohon Jadi S = {(o,o,o),(o,o,l),(o,l,o),(o,l,l),(l,o,o),(l,o,l),(l,l,o),(l,l,l)}

Diskusikan Sebuah perusahaan automobile menyediakan mobil dengan perlengkapan yang dapat dipilih. Setiap mobil yang ditawarkan Dengan atau tanpa automatic tranmission Dengan atau tanpa AC Dengan satu dari tiga pilihan sistem stereo Dengan satu dari 4 pilihan warna eksterior Buat diagram pohon tipe-tipe kendaraan yang mungkin berdasarkan perlengkapan yang ditawarkan!berapa n(S)?

Union (gabungan), Intersection (Irisan) dan Complement (Komplemen) Union dari dua kejadian A dan kejadian B merupakan kejadian yang anggotanya merupakan anggota kejadian A atau anggota kejadian B. Disimbolkan 𝐴βˆͺ𝐡. Irisan dari dua kejadian A dan B merupakan kejadian yang anggotanya harus merupakan anggota dua kejadian tersebut. Disimbolkan 𝐴∩𝐡. Komplemen dari suatu kejadian A adalah himpunan peristiwa dalam ruang sampel yang bukan merupakan anggota dari suatu kejadian tersebut. Disimbolkan 𝐴 β€² .

Diskusikan Ruang sampel . Jika 𝐸 1 , 𝐸 2 , 𝐸 3 , 𝐸 4 , 𝐸 5 adalah kejadian-kejadian dalam ruang sampel S, dan , , tentukan a. b. c. 𝐸 2 βˆͺ 𝐸 5 d. 𝐸 2 ∩ 𝐸 5 e. 𝐸 3 ∩ 𝐸 5 f. 𝐸 4 βˆͺ 𝐸 5 g. 𝐸 1 β€² h. 𝐸 5 β€²

Kejadian Saling Asing (mutually exclusive) Dua kejadian A dan B dinamakan dua kejadian saling asing jika 𝐴∩𝐡=βˆ…. Contoh dalam pengambilan bola bernomor 1-10, jika kejadian A adalah kejadian terambil bola bernomor genap dan B adalah kejadian terambil bola bernomor ganjil, maka kejadian A dan B saling asing. Jika digambarkan dalam diagram

Diskusikan 50 sampel plastik karbonat dianalisis mengenai scratch dan shock resistansinya dengan hasil sebagai berikut : Jika A adalah kejadian bahwa sampel mempunyai shock resistansi yang tinggi dan B adalah kejadian bahwa sampel mempunyai scratch resistansi yang tinggi, maka tentukan n(𝐴∩𝐡),n( 𝐴 β€² ),n(𝐴βˆͺ𝐡),n( 𝐡 β€² )!apakah A dan B saling asing?

Probabilitas Konsep probabilitas yang akan dibahas pada bab ini adalah probabilitas pada ruang sampel diskrit. Definisi Suatu kejadian A yang merupakan subset ruang sampel S, maka probabilitas terjadinya kejadian A dihitung dengan 𝑃 𝐴 = 𝑛 𝐴 𝑛 𝑆

Aksioma Probabilitas Bila S adalah ruang sampel dan A adalah sebarang kejadian dalam eksperimen, maka P(S) = 1 0≀ P(A) ≀ 1 Jika dua kejadian A dan B saling asing dengan 𝐴∩𝐡=βˆ… 𝑃 𝐴βˆͺ𝐡 =𝑃 𝐴 +𝑃 𝐡 Lebih umum jika terdapat kejadian berhingga ataupun tak hingga 𝐴 1 , 𝐴 2 , 𝐴 3 ,… yang saling asing, maka 𝑃 𝐴 1 βˆͺ 𝐴 2 βˆͺ 𝐴 3 βˆͺ… =𝑃 𝐴 1 +𝑃 𝐴 2 +𝑃 𝐴 3 +…

Following Results Jika kejadian A merupakan himpunan kosong maka 𝑃 βˆ… =0 Jika A adalah suatu kejadian dalam ruang sampel S maka 𝑃 𝐴 β€² =1βˆ’π‘ƒ 𝐴 Untuk setiap kejadian A dan B dalam ruang sampel S berlaku 𝑃 𝐴βˆͺ𝐡 =𝑃 𝐴 +𝑃 𝐡 βˆ’π‘ƒ 𝐴∩𝐡 Jika A dan B kejadian dalam ruang sampel S dengan 𝐴⫃𝐡 maka 𝑃 𝐴 ≀𝑃 𝐡

Definisi Untuk ruang sampel diskrit, probabilitas kejadian A, dinotasikan dengan P(A), merupakan jumlahan probabilitas dari outcomes (peristiwa) yang terjadi dalam A. Contoh (DISKUSIKAN) Dari suatu eksperimen menghasilkan outcomes {a,b,c,d} dengan probabilitas masing-masing 0.1,0.3,0.5 dan 0.1. Jika A= {a,b}, B = {b,c,d} dan C = {d},tentukan 𝑃 𝐴 ,𝑃 𝐡 ,𝑃 𝐢 ,𝑃 𝐴 β€² ,𝑃 𝐡′ , 𝑃 𝐢′ ,𝑃 𝐴∩𝐡 ,𝑃 𝐴βˆͺ𝐡 ,𝑃 𝐴∩𝐢

KASUS Dalam proses manufaktur, 10% hasil produksi mengandung surface flaws, dan 25% dari hasil yang mengandung surface flaws bersifat defektif, sedangkan hasil produksi yang tidak mengandung surface flaws hanya 5% yang bersifat defektif. Misalkan D merupakan kejadian hasil produksi bersifat defektif dan F merupakan kejadian hasil produksi mengandung surface flaws, jika ditanyakan probabilitas kejadian D dengan lebih dulu diketahui bahwa hasil produksi mengandung surface flaws maka disimbolkan dengan 𝑃 𝐷|𝐹

Jawab Kasus Jika digambarkan Dapat ditentukan bahwa 𝑃 𝐷|𝐹 =0.25 dan 𝑃 𝐷 𝐹 β€² =0.05

Diskusikan Kasus serupa contoh, dengan data sebagai berikut: Tentukan : 𝑃 𝐷|𝐹 ,𝑃 𝐷|𝐹′ ,𝑃 𝐹|𝐷 ,𝑃 𝐹|𝐷′

Diagram Pohon dari Kasus di Atas Tree diagram

Probabilitas Kondisional Definisi: notasi 𝑃 𝐡|𝐴 disebut probabilitas kondisional dari kejadian 𝐡 jika diberikan kejadian 𝐴, yaitu 𝑃 𝐡|𝐴 = 𝑃 𝐴∩𝐡 𝑃 𝐴

Probabilitas kondisional hasil produksi bersifat defektif dengan terlebih dahulu diketahui bahwa yang terambil mengandung surface flaws adalah

Diskusikan 1. Sebuah perusahaan AC melakukan kontrol produksi dengan menganalisis AC keluarannya, diperoleh data sebagai berikut : Hitung probabilitas Tidak terjadinya gas leaks Terjadi electrical failure jika diketahui telah terjadi gas leaks Terjadi gas leaks jika diketahui telah terjadi electrical failure

Diskusikan 2. A batch of 500 containers for frozen orange juice contains 5 that are defective. Two are selected, at random, without replacement from the batch. What is the probability that the second one selected is defective given that the first one was defective? What is the probability that both are defective? What is the probability that both are acceptable?

Teorema Perkalian Probabilitas Definisi probabilitas kondisional dapat disajikan ulang dalam bentuk yang lebih umum untuk probabilitas irisan dua kejadian A dan B, yaitu 𝑃 𝐴∩𝐡 =𝑃 𝐡|𝐴 𝑃 𝐴 =𝑃 𝐴|𝐡 𝑃 𝐡

Teorema Probabilitas Total A dan A’ merupakan kejadian yang saling asing, jika terdapat kejadian B yang merupakan gabungan kejadian B di dalam A dengan kejadian B di dalam A’, yaitu 𝐡= 𝐡∩𝐴 βˆͺ π΅βˆ©π΄β€² . Jika digambarkan

Teorema Probabilitas Total Probabilitas total dari dua kejadian A dan B adalah 𝑃 𝐡 =𝑃 𝐡∩𝐴 +𝑃 π΅βˆ©π΄β€² =𝑃 𝐡|𝐴 𝑃 𝐴 +𝑃 𝐡|𝐴′ 𝑃 𝐴′

Teorema Probabilitas Total dari k Kejadian Jika 𝐸 1 , 𝐸 2 ,…, 𝐸 π‘˜ merupakan k kejadian saling asing dan 𝐸 1 βˆͺ 𝐸 2 βˆͺ…βˆͺ 𝐸 π‘˜ =𝑆, maka 𝑃 𝐡 =𝑃 𝐡∩ 𝐸 1 +𝑃 𝐡∩ 𝐸 2 +…+𝑃 𝐡∩ 𝐸 π‘˜ =𝑃 𝐡| 𝐸 1 𝑃 𝐸 1 +𝑃 𝐡| 𝐸 2 𝑃 𝐸 2 +…+𝑃 𝐡| 𝐸 π‘˜ 𝑃 𝐸 π‘˜ Misal gambar untuk 4 kejadian

Diskusikan Dalam suatu perusahaan manufaktur semi konduktor, probabilitas terkontaminasi dibagi dalam 3 level:tinggi, sedang dan rendah dengan probabilitas masing-masing 0,2; 0,3 dan 0,5. Selanjutnya probabilitas kegagalan produk tiap level disajikan sebagai berikut Jika F merupakan kejadian terjadinya kegagalan produk, maka tentukan 𝑃 𝐹 !

Kejadian Saling Bebas Biasa disebut pula dengan kejadian saling independen. Dimana pada kasus tertentu, muncul atau tidaknya kejadian A tidak mempengaruhi muncul atau tidaknya kejadian B, begitu pula sebaliknya. Jadi, 𝑃 𝐴∩𝐡 =𝑃 𝐴 𝑃 𝐡 Sehingga 𝑃 𝐡|𝐴 = 𝑃 𝐡∩𝐴 𝑃 𝐴 = 𝑃 𝐡 𝑃 𝐴 𝑃 𝐴 =𝑃 𝐡 Atau 𝑃 𝐴|𝐡 = 𝑃 𝐴∩𝐡 𝑃 𝐡 = 𝑃 𝐴 𝑃 𝐡 𝑃 𝐡 =𝑃 𝐴

Contoh Dalam suatu sirkuit, terdapat aliran dari a ke b, dimana terdapat dua jalur yaitu atas dan bawah dari a menuju ke b. Digambarkan sebagai berikut: Jika T merupakan kejadian melalui jalur atas dan B merupakan kejadian melalui jalur bawah maka Tentukan 𝑃 𝑇βˆͺ𝐡 dengan asumsi T dan B independen

Teorema Bayes Dari probabilitas kondisional 𝑃 𝐴∩𝐡 =𝑃 𝐴|𝐡 𝑃 𝐡 =𝑃 𝐡∩𝐴 =𝑃 𝐡|𝐴 𝑃 𝐴 Maka 𝑃 𝐴|𝐡 = 𝑃 𝐡|𝐴 𝑃 𝐴 𝑃 𝐡 Untuk 𝐸 1 , 𝐸 2 ,…, 𝐸 π‘˜ merupakan k kejadian saling asing dan 𝐸 1 βˆͺ 𝐸 2 βˆͺ…βˆͺ 𝐸 π‘˜ =𝑆, dimana B adalah sebarang kejadian, dengan menggunakan Teorema Probabilitas total maka diperoleh Teorema Bayes :

Diskusikan Customers are used to evaluate preliminary product design. In the past, 95% of successsful products received good reviews, 60% of moderately products received good reviews, and 10% of poor products received good reviews. In addition, 40% of products have been highly successful, 35% of products have been moderately successful and 25% of products have been poor products. What is the probability that a products attains a good review? If a new design attains a good review, what is the probability that it will be a highly a successful product? If a product doesn’t attain a good review, what is the probability that it will be a highly successful product?

Teknik Sampling Teknik pengambilan sampel Dibagi menjadi 2: 1. Probability Sampling Anggota populasi memiliki peluang sama Sampel dipilih berdasarkan peluang 2. Non-probability Sampling Anggota populasi tidak mempunyai peluang sama Sampel dipilih berdasarkan pertimbangan peneliti

Teknik Sampling Probability Sampling Teknik Sampling Simple Random Sampling Systematic Sampling Disproportionate Stratified Random Sampling Proportionate Stratified Random Sampling Cluster Sampling Non Probability Sampling Sampling Purposif Sampling Kuota Sampling Aksidental Sampling Jenuh Snowball Sampling

Probability Sampling Dibagi menjadi 5: 1. Simple Random Sampling acak tanpa memperhatikan strata dalam populasi Anggota populasi dianggap homogen 2. Systematic Sampling Titik awal pengambilan sampel dilakukan secara acak kemudian pengambilan sampel berikutnya diambil mengikuti deret bilangan tertentu (dengan selang tertentu) sampai jumlahnya mencapai target yang diinginkan

Probability Sampling (cont.) 3. Proportioned Stratified Sampling Anggota populasi tidak homogen (antar strata) dan berstrata secara proporsional 4. Disporportioned Stratified Sampling Anggota populasi berstrata tapi kurang proporsional 5. Cluster Sampling Objek yang akan diteliti sangat luas Populasi antar cluster harus homogen Populasi dalam cluster harus heterogen

Non-probability Sampling Dibagi menjadi 5: 1. Convenience Sampling Sampel yang dipilih adalah yang mudah dihubungi, dikenal dan mau bekerjasama 2. Accidental Sampling Penentuan sampel berdasarkan kebetulan, yaitu siapa saja yang secara kebetulan bertemu dengan peneliti

Non-probability Sampling (cont.) 3. Purposive Sampling Sampel dipilih berdasarkan pertimbangan sesuai dengan tujuan penelitian 4. Quota Sampling Menentukan sampel dari populasi yang memiliki ciri-ciri tertentu sampai jumlah kuota yang diinginkan 5. Snowball Sampling Jika informasi tentang populasi hanya sedikit. Sampel dipilih dari sampel terdahulu