VECTOR VECTOR IN PLANE.

Slides:



Advertisements
Presentasi serupa
PERSAMAAN DAN PERTIDAKSAMAAN
Advertisements

Soal No 17 halaman 66 Find a) the coordinates of the foci and vertices for hyperbola whose equations given, b) equation of the asymptotes. Sketch the curve.
Cartesian Coordinate System
PHYSICS AND SYSTEM UNITS AMOUNT
MEDIA PEMBELAJARAN FISIKA
Relation
KULIAH I MEKANIKA TEKNIK PENDAHULUAN
KUSWANTO, SUB POKOK BAHASAN Mata kuliah dan SKS Manfaat Deskripsi Tujuan instruksional umum Pokok bahasan.
RANGKAIAN LOGIKA KOMBINASIONAL
I Made Gatot Karohika, ST. MT. Mechanical Engineering
Rumus-rumus ini masihkah anda ingat?
GERAK LURUS.
MEDIA PEMBELAJARAN FISIKA
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
1. Properties of Electric Charges 2. Coulomb’s law 3. The Electric Fields 4. Electrics Field of a Continuous Charge Distribution 5. Electric Field Lines.
Universitas Jenderal Soedirman Purwokerto FISIKA DASAR II Oleh : Mukhtar Effendi.
KELOMPOK 7 PEMBAHASAN DAN. Pertanyaan Kelompok 1 Hlm An architect is calculating the dimensions for a regular hexagon shaped window. If the height.
Floating Point (Multiplication)
1 Pertemuan 10 Fungsi Kepekatan Khusus Matakuliah: I0134 – Metode Statistika Tahun: 2007.
Transformasi Linear dan Sistem Persamaan Linear Pertemuan 5
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Electric Field Wenny Maulina. Electric Dipole A pair of equal and opposite charges q separated by a displacement d is called an electric dipole. It has.
The eEquation of a Circle Adaptif Hal.: 2 Isi dengan Judul Halaman Terkait The eEquation of a Circle.
Grafika Komputer dan Visualisasi Disusun oleh : Silvester Dian Handy Permana, S.T., M.T.I. Fakultas Telematika, Universitas Trilogi Pertemuan 15 : Kurva.
Perbandingan ,fungsi, persamaan dan identitas trigonometri
Mengidentifikasi Sudut
MATRIKS Konsep Matriks Matrik.
MATRIX Concept of Matrix Matrik.
IRISAN KERUCUT PERSAMAAN LINGKARAN.
VEKTOR VEKTOR PADA BIDANG.
VEKTOR VEKTOR PADA BIDANG.
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
GEOMETRI SUDUT DAN BIDANG.
COLLIGATIVENATURE SOLUTION
CLASS X SEMESTER 2 SMKN 7 BANDUNG
LIMIT FUNGSI LIMIT FUNGSI ALJABAR.
Fungsi, Persamaan Fungsi Linear dan Fungsi Kuadrat
Cartesian coordinates in two dimensions
Menyelesaikan Masalah Program Linear
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
Technology And Engineering TECHNOLOGY AND ENGINERRING
Cartesian coordinates in two dimensions
COMPOUND NOMENCLATURE AND EQUATION OF REACTION
Work and Energy (Kerja dan Energi)
Pertemuan ke-2 Mukhtar Effendi
Parabola Parabola.
FISIKA DASAR By: Mohammad Faizun, S.T., M.Eng.
Crystal Structure.
BILANGAN REAL BILANGAN BERPANGKAT.
Two-and Three-Dimentional Motion (Kinematic)
REAL NUMBERS EKSPONENT NUMBERS.
Rectangles, Rhombuses, and Squares
FACTORING ALGEBRAIC EXPRESSIONS
3rd Semester VECTOR ANALYSIS
GEOMETRY GROUP 7 Loading... TRIANGLE Classifying Triangles The Pythagorean Theorem Special MATERI Classifying Triangles TRIANGLE The Pythagorean.
OPERATIONS ON ALGEBRAIC FRAC TIONAL FORMS A. Addition and Subtraction Example : 1. + =
THE EFFECT OF COOPERATIVE LEARNING TYPE JIGSAW PROBLEM SOLVING
Fungsi Kepekatan Peluang Khusus Pertemuan 10
Disusun oleh : KARLINA SARI ( ) ALIFA MUHANDIS S A ( )
ELASTIC PROPERTIS OF MATERIAL
Matematika PERSAMAAN KUADRAT Quadratic Equations Quadratic Equations
Physics Quantities Vector Quanties Scalar Quantities Consist of.
Magnitude and Vector Physics 1 By : Farev Mochamad Ihromi / 010
How Can I Be A Driver of The Month as I Am Working for Uber?
Suhandi Wiratama. Before I begin this presentation, I want to thank Mr. Abe first. He taught me many things about CorelDRAW. He also guided me when I.
Operasi Matriks Dani Suandi, M.Si..
Vector. A VECTOR can describe anything that has both MAGNITUDE and DIRECTION The MAGNITUDE describes the size of the vector. The DIRECTION tells you where.
Draw a picture that shows where the knife, fork, spoon, and napkin are placed in a table setting.
Force System Resultants 4 Engineering Mechanics: Statics in SI Units, 12e Copyright © 2010 Pearson Education South Asia Pte Ltd.
Transcript presentasi:

VECTOR VECTOR IN PLANE

THE PURPOSE OF LEARNING: VECTOR CS: Applying vector concept in solving a problem BC : Applying vector in a plane Applying vector concept in polyhedral THE PURPOSE OF LEARNING: The students have ability to develop their skill in doing, applying, and solving daily life problem that connected with vector. Hal.: 2 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait VECTOR MAATREGEL VECTOR SCALAR Have direction (force, speed, Distance, etc) Doesn’t have direction (length, mass, time, temperature, etc) Hal.: 3 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait VECTOR Learning Experience 1. How big id the force resultant in a pulley that is shown in the following picture. P2 = 4 KN 600 P1 = 5 KN Hal.: 4 Isi dengan Judul Halaman Terkait

EVERY DIRECTED LINE SEGMENT REPRESENT THE SAME SHIFTING: VECTOR IN A PLANE LOOK AT THE DIRECTED LINE SEGMENT BELOW EVERY DIRECTED LINE SEGMENT REPRESENT THE SAME SHIFTING: TO LEFT 2 TO UPWARD SYMBOL 2 KE ATAS 2 KE KIRI – 4 2 KE ATAS 2 KE KIRI – 4 KE KIRI – 4 2 KE ATAS 2 1 To left 2 To upward 2 – 4 – 4 EVERY DIRECTED LINE SEGMENT ABOVE REPRESENT A VECTOR 2 Hal.: 5 Isi dengan Judul Halaman Terkait

EVERY DIRECTED LINE SEGMENT REPRESENT THE SAME SHIFTING: VECTOR IN A PLANE 5 TO LEFT 4 DOWNWARD EVERY DIRECTED LINE SEGMENT REPRESENT THE SAME SHIFTING: SYMBOL 4 KE BAWAH –4 5 KE KIRI – 5 5 KE KIRI – 5 5 TO LEFT 4 To downward – 4 – 5 4 KE BAWAH –4 – 4 – 5 EVERY DIRECTED LINE SEGMENT ABOVE REPRESENT A VECTOR Hal.: 6 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait VECTOR Exercise Draw a line segment through point A that parallel with and a perpendicular line segment through point B. A B Q P Hal.: 7 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait VECTOR IN A PLANE Solution: B Q P 3 1 A D C E Hal.: 8 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait POSITION VECTOR If point P is a point in Cartesian plane, then vector = P (x1,y1 ) If the coordinate of point P(x1, y1) then position vector from point P is: p y1 Is called vector component of p X1 Unit vector is a vector that have length one unit. Unit vector with direction of X axis is called Unit vector with direction of X axis is called Hal.: 9 Isi dengan Judul Halaman Terkait

It can be stated in basis vector: Isi dengan Judul Halaman Terkait VECTOR IN PLANE VECTOR IN THE FORM OF LINEAR COMBINATION Look at the vector p below: P (x1,y1) X If point P(x1,y1) then OP = OQ + QP It can be stated in basis vector: p = x1 i + y1 j x1 and y1 is called the components vector p Hal.: 10 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait VECTOR IN A PLANE VECTOR LENGTH The vector length is can be drawn by directed line. It is the length of directed line segment. p P(x1,y1) o Q Then, the vector length So, if is Hal.: 11 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait VECTOR IN A PLANE Exercise sample Stated the position vector of point A (5,3) as basis vector (linier combination of i and j) Answer : vector a or = 5 i + 3 j Stated the position vector of point A (3,2,- 4) as basis vector (linier combination of i, j and k) Answer: vektor a or = 3 i + 2 j – 4 k Stated vector as basis vector (linear combination of i and j) if point A (5,-3) and B (3,2) Answer : Hal.: 12 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait VECTOR IN A PLANE Vector Addition If vector a is added with vector b, we will get vector c. it is denoted by How Triangle way Parallelogram way Hal.: 13 Isi dengan Judul Halaman Terkait

Move vector b so the initial is joint Isi dengan Judul Halaman Terkait VECTOR IN A PLANE Triangle Way Move vector b so the initial is joint with the end of vector a C b a + b = c B a A B c = a + b AC = AB + BC Hal.: 14 Isi dengan Judul Halaman Terkait

Move vector b, so the initial is join with VECTOR IN A PLANE Parallelogram way Move vector b, so the initial is join with the initial of vector a a a + b = c b b a Hal.: 15 Isi dengan Judul Halaman Terkait

Define vector AE into vector u and v ? VECTOR IN APLANE EXERCISE SAMPLE Define vector AE into vector u and v ? How about vector EF ? Hal.: 16 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait VECTOR IN A PLANE A B C D F E Hal.: 17 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait VECTOR IN A PLANE Vector Subtraction The rest of vector a and vector b is vector c that get from adding vector a with vector b a - b = a + ( -b) a – b = a + (-b) = (-b) +a = PS + ST = PT = RQ R b b P Q a -b a S a T Hal.: 18 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait Vector in a Plane The multiplication result of real number k with vector a is vector that the length |k| is multiplied by the length of vector a and the direction is: Equal to the direction of vector a if k > 0 opposite the direction of vector a if k < 0 Equal to zero if k = 0 Hal.: 19 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait Vector in a Plane If vector In the form of line segment Hal.: 20 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait Vector in a Plane If vector In the form of line segment Hal.: 21 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait Vector in a Plane Show in vector picture Hal.: 22 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait VECTOR . . . ? In algebra, vector in two dimensional (R2) is orderly pairs of real numbers [x, y], x and y is the components of those vectors and in three dimensional (R3) vector is orderly pairs of real number [x, y, z] x, y and z is the components of those vectors. In geometric, vector is a set of directed line segment. The length of directed line segment shows the size,while the arrow direction shows the vector direction Hal.: 23 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait POSITION VECTOR If point P is a point in Cartesian plane, then vector = P (x1,y1 ) If the coordinate of point P(x1, y1) then position vector from point P is: p y1 Is called vector component of p X1 Unit vector is a vector that have length one unit. Unit vector with direction of X axis is called Unit vector with direction of X axis is called Hal.: 24 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait VECTOR IN POLYHEDRAL Unit vector with the direction of Y axis is called Unit vector that have the same direction with Z axis is called Hal.: 25 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait VECTOR IN POLYHEDRAL VECTOR LENGTH So, if Then, the vector length is Known two points A (x1, y1,z1) and B (x2, y2, z2) In polyhedral, the length of AB is formulated as follows : Hal.: 26 Isi dengan Judul Halaman Terkait

If point P is in line segment AB Isi dengan Judul Halaman Terkait Vctor in a Plane Division formula If point P is in line segment AB then it can be stated: O a b A B P n m p In the form of vector In the form of coordinate Hal.: 27 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait VECTOR IN POLYHEDRAL Scalar multiplication from two vectors If and The multiplication result of two vectors and is Hal.: 28 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait VECTOR IN POLYHEDRAL The multiplication result of two vectors a and b. If both of them make certain angle. It is defined: a.b = Cos  where  :the angle between vector a and b The angle between vector a and b can be determined by: Hal.: 29 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait VECTOR IN POLYHEDRAL b  axb a bxa The cross product of two vectors The cross product of vector and is defined: If vector and Vector Then the cross product of two vectors are formulated as follows: Perkalian silang dua matriks bisa juga diselesaikan menggunakan Determinan 3x3 dengan cara Sarrus Hal.: 30 Isi dengan Judul Halaman Terkait