Agribusiness Study of Programme Wiraraja University

Slides:



Advertisements
Presentasi serupa
Evaluasi Model Regresi
Advertisements

Auto Correlation/ Serial Correlation
Auto CORRELATION KULIAH 13 TIME SERIES Usman Bustaman, S.Si, M.Sc.
Ekonometrika Program Studi Statistika, semester Ganjil 2012/2013 Dr. Rahma Fitriani, S.Si., M.Sc.
KULIAH KE 3 METODE EKONOMETRIKA
AUTOKORELASI (Autocorrelation)
UJI HIPOTESIS.
Analisis Regresi Berganda & Pengujian Asumsi OLS
TIME SERIES DAN STASIONERITAS
UJI UNIT ROOT PADA DATA PANEL
Program Studi Statistika Semester Ganjil 2011
Heteroskedastisitas Penyimpangan asumsi ketika ragam galat tidak konstan Ragam galat populasi di setiap Xi tidak sama Terkadang naik seiring dengan nilai.
Program Studi Statistika, semester Ganjil 2012/2013
Uji Asumsi Klasik Pada Regresi Dengan Metode Kuadrat Terkecil (OLS)
Regresi dengan Autokorelasi Pada Error
Ekonometrika Program Studi Statistika, semester Ganjil 2012/2013 Dr. Rahma Fitriani, S.Si., M.Sc.
Ekonometrika Program Studi Statistika, semester Ganjil 2012/2013 Dr. Rahma Fitriani, S.Si., M.Sc.
KONSEP DAN PENGUJIAN UNIT ROOT
Agribusiness Study of Programme Wiraraja University
Anas Tamsuri UJI STATISTIK UJI STATISTIK.
Richard Matias A.muh.Awal Ridha s Alfiani Nur Islami
MULTICOLLINEARITY Salah satu asumsi model regresi berganda adalah tidak ada hubungan linier antar peubah bebas. Sebagai ilustrasi bagaimana jika terjadi.
Ekonometrika Lanjutan
Ekonometrika Lanjutan
UJI ASUMSI KLASIK & GOODNESS OF FIT MODEL REGRESI LINEAR
Pengujian Korelasi Diri Pertemuan 16
Program Studi Statistika, semester Ganjil 2015/2016
ANALISIS REGRESI DAN KORELASI BERGANDA
Program Studi Statistika Semester Ganjil 2012
Agribusiness Study of Programme Wiraraja University
Program Studi Statistika, semester Ganjil 2012/2013
Analisis Regresi Berganda
EKONOMETRIKA Pertemuan 11: Pengujian Asumsi-asumsi Klasik (Bagian 2)
ANALISIS REGRESI BERGANDA
Program Studi Statistika, semester Ganjil 2012/2013
Program Studi Statistika, semester Ganjil 2012/2013
Program Studi Statistika, semester Ganjil 2012/2013
EKONOMETRIKA Pertemuan 10: Pengujian Asumsi-asumsi Klasik (Bagian 1)
Program Studi Statistika, semester Ganjil 2012/2013
Program Studi Statistika, semester Ganjil 2012/2013
Program Studi Statistika Semester Ganjil 2012
Agribusiness Study of Programme Wiraraja University
Program Studi Statistika, semester Ganjil 2012/2013
Program Studi Statistika Semester Ganjil 2011
Program Studi Statistika Semester Ganjil 2012
Agribusiness Study of Programme Wiraraja University
Agribisnis Study of Programme Wiraraja University
Program Studi Statistika, semester Ganjil 2012/2013
EKONOMETRIKA Pertemuan 11: Pengujian Asumsi-asumsi Klasik (Bagian 2)
Pertemuan 21 Pemeriksaan penyimpangan regresi
STATISTIK II Pertemuan 12-13: Asumsi Analisis Regresi
Program Studi Statistika, semester Ganjil 2012/2013
Pengujian Asumsi OLS Aurokorelasi
Agribusiness Study of Programme Wiraraja University
Asumsi Non Autokorelasi galat
Agribusiness Study of Programme Wiraraja University
Disampaikan Pada Kuliah : Ekonometrika Terapan Jurusan Ekonomi Syariah
Agribusiness Study of Programme Wiraraja University
Uji Asumsi Analisis Regresi Berganda Manajemen Informasi Kesehatan
Agribusiness Study of Programme Wiraraja University
Agribusiness Study of Programme Wiraraja University
Program Studi Statistika, semester Ganjil 2012/2013
Agribusiness Study of Programme Wiraraja University
Agribusiness Study of Programme Wiraraja University
Pertemuan 13 Autokorelasi.
UJI AUTOKORELASI ARIF GUNAWAN PENGERTIAN Dwi Priyanto (2009:61) Autokorelasi adalah keadaan dimana terjadinya korelasi dari residual untuk.
Analisis Regresi Berganda & Pengujian Asumsi OLS
EKONOMETRIKA Pertemuan 11: Pengujian Asumsi-asumsi Klasik (Bagian 1)
Analisis Multivariat Program S2 Matematika Semester Genap 2011/2012
Program Studi Statistika Semester Ganjil 2014
Transcript presentasi:

Agribusiness Study of Programme Wiraraja University Ekonometrika Agribusiness Study of Programme Wiraraja University Milik Dr. Rahma Fitriani, S.Si., M.Sc., digunakan oleh Arfinsyah Hafid Anwari, MMA

Autocorrelation Paling sering terjadi pada data deret waktu Terjadi ketika kovarians dan korelasi antar galat ≠ tidak sama dengan nol. Salah satu pelanggaran asumsi Paling sering terjadi pada data deret waktu Karena urutan pengamatan mempunyai makna Galat pada satu periode mempengaruhi galat pada periode berikutnya Terutama pada periode dengan jarak pendek (mis: harian) Pada data cross section jarang terjadi Karena urutan pengamatan tidak penting

Penyebab Autokorelasi Ommited important variable Misspecification of the model Systematic errors in measurement

Omitted variable Sifat data time series: Misalkan Yt dipengaruhi oleh X2t dan X3t Akan tetapi X3t tidak disertakan di dalam model. Sifat data time series: X3t berhubungan dengan X3,t-1, X3,t-2 Sehingga ut berhubungan dengan ut-1, ut-2

Misspecification of the model Misalkan Yt dipengaruhi oleh X2t secara kuadratik Akan tetapi suku kuadratik X2t tidak disertakan di dalam model. Jika X2t naik atau turun seiring waktu maka vt juga akan naik atau turun seiring waktu

Systematic Errors in Measurement Pengukuran yang dilakukan pada waktu tertentu Misalkan tingkat sediaan pada waktu t Terjadi kesalahan dalam pengukuran tersebut Jika variabel bersifat akumulatif, maka kesalahan pengukuran juga akan terakumulatif Error di pengamatan t dipengaruhi oleh error pada waktu sebelumnya

Jenis autokorelasi ρ menyatakan hubungan fungsional antar galat ut Yang paling sering terjadi adalah first order serial autocorrelation: AR(1) ρ menyatakan hubungan fungsional antar galat ut Koefisien dari first order autocorrelation, Bernilai di antara -1 s/d 1 Dan εt adalah galat yang iid

ρ=0, tidak ada autokorelasi ρ→1, positif korelasi serial, galat waktu sebelumnya sangat mempengaruhi galat saat ini. Galat waktu t-1 yang (-) diikuti oleh galat waktu t yang juga (-) Galat waktu t-1 yang (+) diikuti oleh galat waktu t yang juga (+) ρ→-1, negatif korelasi serial, galat waktu sebelumnya sangat mempengaruhi galat saat ini. Galat waktu t-1 yang (-) diikuti oleh galat waktu t yang (+) Galat waktu t-1 yang (+) diikuti oleh galat waktu t yang (-)

Positive Autocorrelation Autokorelasi positif, ditunjukkan oleh pola siklus dari galat seiring waktu.

Negative Autocorrelation Autokorelasi negatif, ditunjukkan dari pola yang ‘alternating’ dari galat seiring waktu

No pattern in residuals – No autocorrelation Tidak ada pola dari galat, tidak ada autokorelasi

Efek dari Autokorelasi Penduga OLS untuk koefisien regresi tetap tidak bias akan tetap tidak lagi efisien (ragam besar) Tidak lagi BLUE Penduga ragam bagi koefisien regresi menjadi bias dan tidak konsisten Uji hipotesis tidak lagi valid Tidak mencerminkan hal yang sebenarnya Overestimated R2: Lebih besar dari yang sebenarnya Model lebih sering dinyatakan ‘a good fit’ daripada hubungan yang sebenarnya Uji t juga lebih sering dinyatakan nyata

Efek matematis terhadap ragam penduga koefisien Ragam peragam penduga koefisien OLS tanpa autokorelasi:

Jika terdapat autokorelasi, maka: Ragam peragam penduga koefisien OLS dengan autokorelasi:

Detecting Autocorrelation:The Durbin-Watson Test Uji Durbin-Watson (DW): - Uji untuk first order autocorrelation AR (1) ut = ut-1 + vt dengan vt  N(0, v2). Hipotesis uji: H0 : =0 and H1 : 0 Statistik uji

The Durbin-Watson Test: Critical Values Dengan penyederhanaan: Sehingga: Untuk DW → 2, tidak akan ada cukup bukti untuk adanya autokorelasi Terdapat dua nilai kritis bagi DW, Upper critical value (du) Lower critical value (dL) Terdapat pula daerah yang ‘inconclusive’

The Durbin-Watson Test: Interpretasi hasil uji Syarat agar uji dapat dilakukan secara sah: 1. Ada suku konstan pada model regresi 2. Peubah eksogen non stokastik (fixed) 3. Tidak ada lag pada peubah eksogen

Uji Breusch-Godfrey Dapat dilakukan untuk menguji autokorelasi sampai derajat ke r Dengan mengkombinasikan sifat galat tsb dan model regresi: Hipotesis nol dan hipotesis alternatif: H0 : 1 = 0 dan 2 = 0 dan ... dan r = 0 H1 : 1  0 atau 2  0 atau ... atau r  0

Langkah-langkah uji Breusch-Godfrey Langkah 1: Dapatkan penduga bagi model regresi Langkah 2: Dapatkan penduga galat Langkah 3: Dapatkan penduga auxiliary regression bagi penduga galat sebagai fungsi dari seluruh peubah eksogen dan galat sejumlah lag yang ingin diuji

Langkah 4: Dapatkan statistik uji berdasarkan koefisien determinasi dari auxiliary regression R2 Langkah 5: Tolak H0 jika ada bukti yang nyata dari statistik uji Penentuan r tergantung dari periode data (bulanan, mingguan dsb) dan sifat siklusnya.

Cara Mengatasi Autokorelasi Berdasarkan pengetahuan tentang ρ diketahui ρ diketahui atau ρ tidak diketahui

Mengatasi autokorelasi ketika ρ diketahui ρ diketahui dan diasumsikan autokorelasi terjadi seusai AR(1) model. (1) Model yang sama berlaku pada waktu ke t-1 Model pada t-1 dikalikan dengan ρ (2)

Persamaan (1) dikurangi dengan persamaan (2) Akibat pembedaan, pengamatan berkurang 1 Pengamatan pertama digantikan dengan:

Mengatasi autokorelasi ketika ρ tidak diketahui: Cochrane-Orcutt Iterative Procedure Langkah 1: duga model regresi dan dapatkan penduga galat Langkah 2: duga koefisien korelasi serial orde 1 dengan metode OLS dari: Langkah 3: Lakukan transformasi untuk peubah peubah yang dipakai dengan hubungan berikut: Langkah 4: Dapatkan penduga regresi dan penduga galat untuk persamaan berikut:

Ulangi lagi langkah 2 sampai dengan 4 sampai dipenuhi kriteria berikut: