MORTALITIES.

Slides:



Advertisements
Presentasi serupa
Bagaimana Menghadapi Kematian All of us fear death. This is perfectly natural. However, death is part of life. Once we are born, we will have to die. No.
Advertisements

SURVIVAL KELULUSHIDUPAN.
Soal No 17 halaman 66 Find a) the coordinates of the foci and vertices for hyperbola whose equations given, b) equation of the asymptotes. Sketch the curve.
PENGUKURAN RISIKO PENYAKIT
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
Common Effect Model.
LAJU KEMATIAN Z = Total M = Alami F = Penangkapan
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
Parabolas Circles Ellipses Presented by: 1.Ihda Mardiana H. 2.Hesti Setyoningsih 3.Dewi Kurniyati 4.Belynda Surya F.
PERTEMUAN 10 Inventory Models Mata kuliah: D Analisa Bisnis Kuantitatif Tahun: 2010.
Proses Stokastik Semester Ganjil 2013/2014
BAGIAN III Lapisan Data Link.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Dicky Faizal Alie Sistem Informasi
Mekanisme Pasar Permintaan dan Penawaran
Konsep KLB/Wabah.
Responsi Teori Pendukung
Ruang Contoh dan Peluang Pertemuan 05
1 Pertemuan 10 Fungsi Kepekatan Khusus Matakuliah: I0134 – Metode Statistika Tahun: 2007.
BAB 6 KOMBINATORIAL DAN PELUANG DISKRIT. KOMBINATORIAL (COMBINATORIC) : ADALAH CABANG MATEMATIKA YANG MEMPELAJARI PENGATURAN OBJEK- OBJEK. ADALAH CABANG.
 1. Explaining the definition of linear equation with one variable.  2. Explaining the characteristics of linear equation with one variable. 3. Determining.
Verb Tense Tense denotes the time of the action indicated by a verb. The time is not always the same as that indicated by the name of the tense.
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
Suku Bunga Nominal dan Suku Bunga Efektif Pertemuan 5 s.d 6
Keuangan dan Akuntansi Proyek Modul 2: BASIC TOOLS CHRISTIONO UTOMO, Ph.D. Bidang Manajemen Proyek ITS 2011.
Suharmadi Sanjaya - Matematika ITS. BACKGROUND A Good course has a clear purpose: Applied Mathematics is alive and very vigorous Teaching of Apllied Mathematics.
DISTRIBUSI BINOMIAL.
STATISTIKA CHATPER 4 (Perhitungan Dispersi (Sebaran))
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
Konstruksi Persamaan Laju
Recurrence relations.
LEARNING CYCLE Written by : Agung Purnomo Speaker by : Ust. Hannan.
POPULATION POPULATION DENSITY :
CAPITAL BUDGETING.
Pertemuan 1-2: Overview Statistika dan Penyajian Data
ESTIMASI UKURAN POPULASI (^N)
Present Value.
Kode Hamming.
Mortalitas Ledhyane Ika Harlyan MK. DINAMIKA POPULASI
DISTRIBUSI BINOMIAL.
Dasar-Dasar Pemrograman
Parabola Parabola.
PENGUKURAN RISIKO PENYAKIT
PENDUGAAN PARAMETER Pertemuan 8
PENDUGAAN POPULASI Tujuan :
Organizational Environment Analysis
BILANGAN REAL BILANGAN BERPANGKAT.
Two-and Three-Dimentional Motion (Kinematic)
REAL NUMBERS EKSPONENT NUMBERS.
Labor Economics Series
Fish farming is one of themost rapidly developing food sectors in the world recently surpassing beef production on land (FAO, 2013, 2014). In Southeast.
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
UKURAN EPIDEMIOLOGI 1 Oleh Nugroho.
ACCUMULATION PROBLEMS
Fungsi Kepekatan Peluang Khusus Pertemuan 10
PENGARUH PREDASI TERHADAP POPULASI
PENGUKURAN RISIKO PENYAKIT
Master data Management
CAPITAL BUDGETING.
Matematika PERSAMAAN KUADRAT Quadratic Equations Quadratic Equations
Judul Penelitian Oleh:.
Simultaneous Linear Equations
UKURAN FREKUENSI EPIDEMIOLOGI
THE INFORMATION ABOUT HEALTH INSURANCE IN AUSTRALIA.
By Yulius Suprianto Macroeconomics | 02 Maret 2019 Chapter-5: The Standard of Living Over Time and A Cross Countries Source: http//
Right, indonesia is a wonderful country who rich in power energy not only in term of number but also diversity. Energy needs in indonesia are increasingly.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Hukum Konservasi Muatan dan energi.
SESI 5 Mekanisme Penularan
By Group 5. Once upon a time a lion was roaming in the jungle in search of a prey. Luckily, he saw a rabbit sleeping fast under a tree. He was delighted.
Transcript presentasi:

MORTALITIES

MORTALITIES GENERAL CONCEPTS Each year a proportion of the fish alive at the beginning of the year will die. Some by predation, disease or other natural causes, and some by being caught. While others will survive until the beginning of the next year. Mathematically : N1= P + D + O + C + N2 Annual

Annual predation rate = P/Ni Annual rate of death by disease = D/Ni Annual rate of death by other causes = O/Ni (lack of food, competition, predation) Annual rate of exploitation = C/Ni ↔ M Annual rate of death by all causes Annual survival rate In practice...

In practice it is not very useful in studying the dynamics of the population → causes of death are independent of each other → it is better to consider the instantaneous rates (so that the number dying from anyone cause are not affected by the numbers dying from any other cause). (dP + dD + dO) = M Nt dt dC = F Nt dt

Two causes decrease of the population: 1. Natural Mortality (M) dN/dt = -MN Fishing Mortality (F) dN/dt = -FN Z = F + M Two causes decrease of the population: 1. Natural Mortality (M) dN/dt = -MN Fishing Mortality (F) dN/dt = -FN Z = F + M

total death ≈ decrease in the population numbers -dN = Z Nt dt … (1) dN/dt=-ZN …….(Gulland, 1969) Z= instantaneous mortality coeff. Z = M + F F = q f (2) Writing equation (1) in the form : and integrating, we obtain : Log Nt = -Zt + constant , or … ………..(3) Equation (1) , (2) , and (3) are among the most basic equations of the fish population dynamic

From equation (3) we have :

Nt = the numbers present at any time t No = initial number of individuals at time t=0

ESTIMASI MORTALITAS TOTAL Syarat : Kelimpahan (N0 dan N1) Jumlah yang hidup : Estimasi Z dapat pula diperoleh dengan metode semigrafik

Jika jumlah data frekuensi panjang tersedia (cukup besar) Z diestimasi berdasarkan panjang rata-rata ( ) ikan yang tertangkap (Pauly, 1980) : n : jumlah ikan yang digunakan untuk estimasi

Estimasi mortalitas berdasarkan data hasil tangkapan per satuan upaya dan konsep koefisien kemampuan menangkap Estimasi Z berdasarkan persamaan Beverton & Holt L’ = batas bawah dari interval kelas

Estimasi Z berdasar data CPUE dari penelitian. Koefisien mortalitas total (Z) dapat dihitung jika tersedia dugaan jumlah ikan dalam kohort untuk 2 periode waktu yang berbeda selama tahap eksploitasi (t1 dan t2). Asumsi : Hasil tangkap per satuan upaya (CPUE) adalah proporsional terhadap jumlah ikan di laut (N). → Jika di laut tersedia ikan dua kali lipat maka ikan yang tertangkap per operasi penangkapan akan dua kali lipat pula.

CPUEt = jumlah yang tertangkap dari suatu kohort per unit upaya pada waktu t. Secara matematis dinyatakan :

2. ESTIMASI MORTALITAS PENANGKAPAN Direct Census Swept Area → a/A Marking → jumlah ikan bertanda tertangkap kembali Perubahan dalam total mortalitas Z T = (F + M) T = q f + M F dan M diestimasi dengan memplotkan Z terhadap f yang menghasilkan garis lurus z q M f

3. ESTIMASI MORTALITAS ALAMI Terjadi karena berbagai sebab Berkaitan dengan K (K tinggi → M tinggi dan sebaliknya). Rasio M/K = 1,5 s/d 2,5 (Beverton & Holt, ’59) Berkaitan dengan L∞ dan W∞ , karena pemangsa ikan besar lebih sedikit dibanding ikan kecil Berkaitan dengan suhu Rumus empiris Paully: