STATISTIK II Pertemuan 2: Probabilitas dan Distribusi Probabilitas Dosen Pengampu MK: Evellin Lusiana, S.Si, M.Si
Materi Pengantar Probabilitas Prinsip menghitung Distribusi probabilitas
Pengantar Probabilitas [1] Anda ingin belajar bahasa inggris. Saat ini tersedia banyak lembaga kursus di Malang seperti LIA, Primagama, EF, dsb. Lembaga mana yang akan anda pilih?
Pengantar Probabilitas [2] Probabilitas (p) kemungkinan terjadinya suatu peristiwa di masa yang akan datang (0≤p≤1). Beberapa istilah penting Percobaan – aktivitas yang melahirkan peristiwa Hasil (ruang sampel) – semua kemungkinan peristiwa yang mungkin dari suatu percobaan Peristiwa – hasil yang terjadi dari satu percobaan
Pengantar Probabilitas [3] Menghitung probabilitas (A) suatu peristiwa Pendekatan klasik Pendekatan relatif Pendekatan subjektif berdasarkan penilaian pribadi atau opini ahli
Pengantar Probabilitas [4] Contoh: Percobaan/Kegiatan : Jual beli saham di BES Hasil : ____________ Probabilitas peristiwa Jual saham = Beli saham = Jika ada 3,000,000 transaksi di mana 2,600,000 adalah transaksi jual dan 400,000 transaksi beli, maka berapa probabilitas jual dan beli?
Prinsip Menghitung Permutasi Banyaknya cara untuk mengatur k objek dari n objek secara berurutan contoh: Ada 5 buku di mana 3 diantaranya akan diatur di rak. Berapa banyak cara untuk buku tersebut? Jawab: cara
Prinsip Menghitung Kombinasi Banyaknya cara memilih/mengatur k objek dari n objek tanpa memperhatikan urutan Contoh: ada 5 buku dan 3 diantaranya akan dipilih secara acak untuk disumbangkan. Berapa banyak kombinasi buku yang akan terpilih Jawab: kombinasi
Dari suatu komite yg terdiri atas 6 orang (4 pria, 2 wanita), akan dipilih perwakilan 3 orang untuk mengikuti sebuah seminar. Berapa probabilitas perwakilan tersebut terdiri atas minimal 1 wanita?
Distribusi Probabilitas Distribusi probabilitas adalah kumpulan semua kemungkinan hasil numerik untuk suatu variabel serta probabilitas untuk masing-masing hasil tersebut. Banyaknya mobil terjual Probabilitas 2 0.20 3 0.40 4 0.24 5 0.16
Distribusi Probabilitas Kontinu: Distribusi Normal (N) ‘berbentuk genta/lonceng simetris mean=median=modus f(X) σ X μ Mean = Median = Modus
Fungsi Densitas Probabilitas Normal Where e = 2.71828 π = 3.14159 μ = rata-rata populasi σ = standar deviasi populasi
Distribusi Normal Standar (Z) Setiap distribusi normal (dengan berbagai nilai mean dan standar deviasi) dapat dijadikan distribusi normal standar (Z) Distribusi Z memiliki mean=0 dan standar deviasi=1
Transformasi Normal Standar (XZ) Distribusi Z selalu memiliki mean = 0 and standar deviasi = 1
Contoh: Transformasi Normal Standar Misal, X=pengeluaran untuk pulsa sebulan Jika X berdistribusi normal dengan mean=Rp100ribu dan standar deviasi=Rp50ribu, nilai Z untuk X = Rp200ribu yaitu
Contoh: Transformasi Normal Standar Misal, X=pengeluaran untuk pulsa sebulan Jika X berdistribusi normal dengan mean=Rp100ribu dan standar deviasi=Rp50ribu, nilai Z untuk X = Rp200ribu yaitu Lakukan perhitungan nilai Z untuk X=Rp30ribu dan X=Rp150ribu.
Menentukan Probabilitas Normal Probabilitas dihitung berdasarkan luas area di bawah kurva f(X) P ( a ≤ X ≤ b ) = P ( a < X < b ) (Catatan: P(X=x) untuk berbagai nilai x selalu nol. P(X=x)=0) a b X
Tabel Normal Standar Tabel Kumulatif Normal Standar merupakan tabel yang berupa daftar probabilitas kurang dari (kumulatif—P(Z≤z)). 0.9772 Contoh: P(Z < 2.00) = 0.9772 Z 2.00
Baris menunjukkan nilai Z sampai desimal pertama Tabel Normal Standar Kolom menunjukkan nilai desimal kedua Z Z 0.00 0.01 0.02 … 0.0 0.1 Baris menunjukkan nilai Z sampai desimal pertama . 2.0 .9772 P(Z < 2.00) = 0.9772 2.0
Prosedur Menentukan Nilai Probabilitas Normal Untuk mendapatkan nilai P(a < X < b) jika X berdistribusi normal: Gambarkan kurva normal dari permasalahan yang ditanyakan Transformasi X ke Z Gunakan tabel normal standar
Contoh: Menghitung Probabilitas Normal X menunjukkan waktu yang dibutuhkan untuk mendownload sebuah video dari internet (dalam detik) . Jika X berdistribusi normal dengan rata-rata18.0 detik dan standar deviasi 5 detik. Hitung P(X < 18.6) a) Gambarkan kurva normal dari permasalahan yang ditanyakan 18.6 X 18.0
Contoh: Menghitung Probabilitas Normal b) Transformasi X Z μ = 18 σ = 5 μ = 0 σ = 1 X Z 18 18.6 0.12 P(X < 18.6) P(Z < 0.12)
Contoh: Menghitung Probabilitas Normal P(X < 18.6) b) Hitung peluang dengan bantuan Tabel normal = P(Z < 0.12) .02 Z .00 .01 0.5478 0.0 .5000 .5040 .5080 0.1 .5398 .5438 .5478 0.2 .5793 .5832 .5871 Z 0.3 .6179 .6217 .6255 0.00 0.12
Contoh: Menghitung Probabilitas Normal Tentukan P(X > 18.6) X 18.0 18.6 Chap 6-24
Contoh: Menghitung Probabilitas Normal (continued) Tentukan P(X > 18.6)… P(X > 18.6) = P(Z > 0.12) = 1.0 - P(Z ≤ 0.12) = 1.0 - 0.5478 = 0.4522 0.5478 1.000 1.0 - 0.5478 = 0.4522 Z Z 0.12 0.12 Chap 6-25
Contoh: Menghitung Probabilitas Normal Tentukan P(18 < X < 18.6) 18 18.6 X
Contoh: Menghitung Probabilitas Normal Tentukan P(18 < X < 18.6) Hitung nilai Z 18 18.6 X 0.12 Z P(18 < X < 18.6) = P(0 < Z < 0.12) Chap 6-27
Contoh: Menghitung Probabilitas Normal P(18 < X < 18.6) = P(0 < Z < 0.12) = P(Z < 0.12) – P(Z ≤ 0) .02 Z .00 .01 = 0.5478 - 0.5000 = 0.0478 0.0 .5000 .5040 .5080 0.0478 0.5000 0.1 .5398 .5438 .5478 0.2 .5793 .5832 .5871 0.3 .6179 .6217 .6255 Z 0.00 0.12 Chap 6-28
Contoh: Menghitung Probabilitas Normal Tentukan P(17.4 < X < 18) X 18.0 17.4
Contoh: Menghitung Probabilitas Normal (continued) Tentukan P(17.4 < X < 18)… P(17.4 < X < 18) = P(-0.12 < Z < 0) = P(Z < 0) – P(Z ≤ -0.12) = 0.5000 - 0.4522 = 0.0478 0.0478 0.4522 Distribusi normal bersifat simetris, sehingga nilai probabilitasnya sama dengan P(0 < Z < 0.12) X 17.4 18.0 Z -0.12
TUGAS INDIVIDU Sebuah perusahaan membuat tiga divisi baru dan terdapat 7 manajer yang layak ditunjuk sebagai kepala divisi. Berapa banyak cara penentuan tiga kepala divisi yang baru? (Asumsikan penugasan antar divisi berbeda)
2. Anggota komisaris direktur PT 2. Anggota komisaris direktur PT.ABC terdiri atas 12 orang, dimana 3 diantaranya adalah wanita. Tiga perwakilan dipilih secara random untuk menghadiri seminar yang diadakan Kadin. Hitunglah probabilitas Semua perwakilan adalah pria Paling tidak satu perwakilan adalah wanita
3. Variabel random X berdistribusi normal dengan mean=12 3. Variabel random X berdistribusi normal dengan mean=12.2 dan standar deviasi=2.5. hitung Nilai Z untuk X=14.3 Probabilitas 12.2<X<14.3 Probabilitas X<10
4. Sebuah pabrik printer melaporkan bahwa rata2 jumlah halaman yg dapat dicetak oleh sebuah printer sebelum rusak adalah 12200 hal. Banyaknya halaman yg tercetak berdistribusi normal dengan standar deviasi 820 hal. Berapa persen printer yang mampu mencetak lebih dari 13000 hal.? Berapa persen printer yang mampu mencetak jumlah halaman antara 10000 sampai 13000 hal.? Berapa persen printer yang dapat mencetak kurang dari 11000 halaman?