GERAK MELINGKAR DAN GRAVITASI

Slides:



Advertisements
Presentasi serupa
HUKUM KEPLER Johannes Kepler (1571–1630).
Advertisements

GERAK MELINGKAR DENGAN LAJU KONSTAN
Dinamika Partikel Diah Prameswari Fairuz Hilwa Nabilla Kharisma
Pembelajaran Fisika SMA Kelas X.
GERAK MELINGKAR.
BAB 3 Gerak Melingkar Standar Kompetensi Kompetensi Dasar Indikator
MASUK MASUK KELUAR KELUAR STANDAR KOMPETENSI MATERI TUJUAN PEMBELAJARAN HOME.
KINEMATIKA ROTASI TOPIK 1.
HUKUM GRAVITASI NEWTON
Selamat Belajar… Bersama Media Inovasi Mandiri Semoga Sukses !!
GERAK HARMONIK SEDERHANA
GERAK HARMONIK SEDERHANA
By ; Niko Timisela & Gretta Sumah
HUKUM GRAVITASI SEMESTA
GERAK MELINGKAR DENGAN LAJU KONSTAN
GERAK MELINGKAR BERATURAN
Gerak Melingkar.
Anggota : M.NUR HIDAYATULLAH RAFIDATUL ANISA SISCAWATI RIZKI L SUSIANA
DINAMIKA PARTIKEL.
Dasar-dasar Mekanika Benda Langit
HUKUM NEWTON TENTANG GERAK
SMKN Jakarta GERAK MELINGKAR 2014 SMK Bidang Keahlian Kesehatan.
MEDAN GRAVITASI Pertemuan 19
Berkelas.
GERAK HARMONIK SEDERHANA
GETARAN HARMONIK SEDERHANA
ROTASI r s s φ Rotasi dinyatakan dengan radian dengan mengukur sudut φ
GERAK HARMONIK SEDERHANA
“Karakteristik Gerak Harmonik Sederhana”
GERAK MELINGKAR BERATURAN (GMB)
Pertemuan 1 Pendahuluan
GETARAN HARMONIK SEDERHANA
HUBUNGAN RODA – RODA DALAM GERAK MELINGKAR
FISIKA DASAR MUH. SAINAL ABIDIN.
Oleh : Andari Suryaningsih, S.Pd, M.M.
1 f T Fk.x F m.a MODUL 10. FISIKA DASAR I
Standar Kompetensi Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik Kompetensi Dasar Menganalisis keteraturan gerak planet.
Dinamika Partikel dengan Gaya Gesekan
BAHAN AJAR 3 GERAK MELINGKAR Disampaikan : M Jalil,S.Pd
GERAK MELINGKAR BERATURAN
Gerak Melingkar Kelas X , Semester I , Oleh : Supriyanto PENDAHULUAN
Soal dan Pembahasan EBAS Gasal Tahun Pelajaran 2010/2011
Arina Dwi Saputri Hidayah Karmelia
Gerak Melingkar SMAK 1 BPK PENABUR JAKARTA.
GETARAN HARMONIK SEDERHANA
Gerak Melingkar Beraturan (GMB)
HUKUM GRAVITASI NEWTON By : Mustia Dewi Irfianti
KINEMATIKA PARTIKEL.
BERDASARKAN HUKUM NEWTON
Gerak Melingkar PENDAHULUAN SK / KD TUJUAN FREKENSI PERIODE
BAB II KINEMATIKA GERAK
GERAK TRANSLASI, GERAK ROTASI, DAN KESEIMBANGAN BENDA TEGAR
GERAK MELINGKAR v v v v x = r sin  r  x = r cos  v v v.
BERDASARKAN HUKUM NEWTON
Menganalisis besaran fisika pada gerak melingkar dengan laju konstan
Pembelajaran Fisika SMA Kelas X.
HUKUM GRAVITASI NEWTON
MEKANIKA BENDA LANGIT.
HUKUM NEWTON GRAVITASI
ANGGOTA KELOMPOK: PERSENTASI KELOMPOK X RAHMAN AL HAKIM ( )
Keteraturan Gerak Planet dalam Tata Surya
USAHA DAN ENERGI Definisi Usaha dan Energi Usaha dan Perubahan Energi
Gerak Rotasi dan Hukum Gravitasi
HUKUM GRAVITASI SEMESTA
HUKUM GRAVITASI SEMESTA
Apa itu gravitasi ??? GRAVITASI = gaya tarik-menarik yang terjadi antara semua partikel yang mempunyai massa di alam semesta Pada sejarahnya, Newton menemukan.
MEKANIKA Oleh WORO SRI HASTUTI
KINEMATIKA PARTIKEL.
HUKUM GRAVITASI SEMESTA
BAB 7 HUKUM NEWTON KOMPETENSI DASAR 3.7Menganalisis interaksi pada gaya serta hubungan antara gaya, massa dan gerak lurus benda serta penerapannya dalam.
Transcript presentasi:

GERAK MELINGKAR DAN GRAVITASI 1. SYAIFUDDIN ZUMMAH (136484003) 2. RAHMAT DWI SUSILO (136484011) 3. M. ZAIN AL HADAD (136484019) 4. DIMAS NUR RISKI (136484028)

GERAK MELINGKAR Gerak melingkar merupakan gerak pada lintasan yang berbentuk lingkaran. Gerak melingkar dibedakan menjadi dua yaitu Gerak Melingkar Beraturan (GMB) Gerak Melingkar Berubah Beraturan (GMBB)

BESARAN-BESARAN DALAM GERAK MELINGKAR 1. Periode (T) adalah waktu yang diperlukan untuk satu kali putaran penuh 2. Frekuensi (f) adalah banyaknya putaran dalam satu detik Hubungan f dengan T secara matematis adalah : f = 1/T Dimana f satuannya Hertz T satuannya sekon 3. Kelajuan linier (v) adalah hasil bagi panjang lintasan dengan selang waktu 4. Kecepatan sudut (ω) yaitu hasil bagi sudut yang ditempuh benda dengan selang waktu. Ditulis : ω = 2П/T satuan dari ω adalah rad/s Hubungan antara v dengan ω adalah : v = ω.r dengan r = jari-jari lingkaran (m)

PERCEPATAN SENTRIPETAL Percepatan sentripetal : percepatan yang selalu tegal lurus kecepatan liniernya dan mengarah ke pusat lingkaran. Percepatan terjadi karena kecepatan linier benda yang terus berubah-ubah.

Secara matematis percepatan sentripetal ditulis : as = V2/r Dengan as = percepatan sentripetal (m/s2) V = kecepatan (m/s) r = jari-jari lingkaran (m)

GAYA SENTRIPENTAL Gaya sentripental : gaya yang tegak lurus vektor kecepatan dan mengarah ke pusat lingkaran. Secara matematis di tulis : Dengan Fs = gaya sentripetal (N) m = massa (kg) as = percepatan sentripetal (m/s2 ) Fs = m . as

GERAK MELINGKAR BERATURAN Gerak melingkar beraturan merupakan gerak benda yang menempuh lintasan lingkaran dengan laju linier yang tetap. Dalam hal ini besar kecepatan atau laju tetap, sedangkan kecepatannya berubah (besar tetap, arah berubah). Posisi sudutnya dapat dihitung dengan persamaan :  = ω .t , dengan t = waktu tempuh (s) Grafik posisi sudut terhadap waktu pada GMB :  t

HUBUNGAN RODA-RODA Hubungan sepusat : Pada hubungan dua roda sepusat maka arah putaran dan kecepatan sudut kedua roda sama. Jadi : 1 = ω2 Hubungan bersinggungan Pada hubungan ini arah putaran keduanya berlawanan dan kelajuan linier keduanya sama . Jadi v1 = v2 Hubungan dua roda dengan tali , maka arah putaran dan kelajuan linier sama. Jadi v1 = v2

GERAK MELINGKAR BERUBAH BERATURAN Gerak melingkar berubah beraturan merupakan gerak benda yang menempuh lintasan lingkaran dengan laju linier yang berubah. Dalam hal ini besar kecepatan atau laju berubah, sedangkan kecepatannya tetap. Grafik kecepatan fungsi waktu pada GMBB : ω ωo t Secara matematis kecepatan sudut pada GMBB : ωt = ωo + t

Posisi sudut yang ditempuh oleh benda yang bergerak melingkar berubah beraturan secara matematis ditulis : Dengan : Θ = posisi sudut benda (rad) ωo = kecepatan sudut awal (rad/s)  = percepatan sudut (rad/s2) Θ = ωo . t + ½. .t2

Hukum Gravitasi Newton Gaya gravitasi dua benda merupakan gaya tarik-menarik yang besarnya berbanding lurus dengan hasil kali massa-massanya dan berbanding terbalik dengan kuadrat jarak antara keduanya. F = gaya tarik gravitasi (N) m1, m2 = massa masing-masing benda (kg) r = jarak antara kedua benda G = konstanta gravitasi umum, besarnya 6,67 x 10 – 11 N m2 kg–2

RESULTAN GAYA GRAVITASI Jika suatu benda dipengaruhi oleh dua buah gaya gravitasi atau lebih, maka resultan gaya gravitasi yang bekerja pada benda tersebut di hitung berdasarkan penjumlahan vektor F1 = F12 + F13 Besar resultan gaya gravitasi F1

KUAT MEDAN GRAVITASI Kuat medan gravitasi adalah gaya gravitasi persatuan massa atau gaya gravitasi yang bekerja pada sebuah massa.

POTENSIAL GRAVITASI Potensial gravitasi adalah energi potensial gravitasi tiap satu satuan massa. Potensial V = potensial gravitasi (volt)

PERCEPATAN GRAVITASI Besar percepatan gravitasi yang di alami semua benda di permukaan planet adalah sama.

Hukum Keppler Hukum I “sebuah planet bergerak mengitari matahari dalam orbit elips, denganMatahari pada salah satu fokus elipsnya”. Hukum II “Garis lurus antara Matahari dengan planet menapu luasan yang sama untuk waktu yang sama”. “kuadrat periode revolusi planet sebanding dengan pangat tiga jarak rata-rata antara Matahari dengan planet.

TERIMA KASIH