REAL NUMBERS EKSPONENT NUMBERS.

Slides:



Advertisements
Presentasi serupa
PERSAMAAN DAN PERTIDAKSAMAAN
Advertisements

Menerapkan Operasi pada Bilangan Real l
LIMIT FUNGSI LIMIT FUNGSI ALJABAR.
Relation
SUBPROGRAM IN PASCAL PROCEDURE Lecture 5 CS1023.
Sistem – Sistem Bilangan, Operasi dan kode
BUDIYONO Program Pascasarjana UNS
Game Theory Purdianta, ST., MT..
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
TEKNIK PENGINTEGRALAN
BILANGAN REAL BILANGAN BERPANGKAT.
BLACK BOX TESTING.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
1. Properties of Electric Charges 2. Coulomb’s law 3. The Electric Fields 4. Electrics Field of a Continuous Charge Distribution 5. Electric Field Lines.
1 Diselesaikan Oleh KOMPUTER Langkah-langkah harus tersusun secara LOGIS dan Efisien agar dapat menyelesaikan tugas dengan benar dan efisien. ALGORITMA.
Floating Point (Multiplication)
1 Pertemuan 10 Fungsi Kepekatan Khusus Matakuliah: I0134 – Metode Statistika Tahun: 2007.
 1. Explaining the definition of linear equation with one variable.  2. Explaining the characteristics of linear equation with one variable. 3. Determining.
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
Verb Tense Tense denotes the time of the action indicated by a verb. The time is not always the same as that indicated by the name of the tense.
Tugas media pembelajaran Nama : Nafsul Mutmainah Kelas : VII C NIM : A
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Keuangan dan Akuntansi Proyek Modul 2: BASIC TOOLS CHRISTIONO UTOMO, Ph.D. Bidang Manajemen Proyek ITS 2011.
Numerical Methods Semester Genap tahun 2015/2016 M. Ziaul Arif Jurusan Matematika - FMIPA Lecture 3 : Roots of Nonlinear equation.
The eEquation of a Circle Adaptif Hal.: 2 Isi dengan Judul Halaman Terkait The eEquation of a Circle.
by : SARTIM S, S.Pd. mathematics teacher SMKN 30 JAKARTA
Thermodinamika FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA
MATRIKS Konsep Matriks Matrik.
MATRIX Concept of Matrix Matrik.
IRISAN KERUCUT PERSAMAAN LINGKARAN.
VEKTOR VEKTOR PADA BIDANG.
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
HUKUM AMPERE.
Recurrence relations.
GEOMETRI SUDUT DAN BIDANG.
COLLIGATIVENATURE SOLUTION
CLASS X SEMESTER 2 SMKN 7 BANDUNG
LIMIT FUNGSI LIMIT FUNGSI ALJABAR.
Fungsi, Persamaan Fungsi Linear dan Fungsi Kuadrat
Cartesian coordinates in two dimensions
Menyelesaikan Masalah Program Linear
Cartesian coordinates in two dimensions
Kode Hamming.
COMPOUND NOMENCLATURE AND EQUATION OF REACTION
Presentasi Statistika Dasar
Parabola Parabola.
VECTOR VECTOR IN PLANE.
BILANGAN REAL BILANGAN BERPANGKAT.
Physics lesson.
FISIKA DASAR By: Mohammad Faizun, S.T., M.Eng.
BILANGAN REAL BILANGAN BERPANGKAT.
Two-and Three-Dimentional Motion (Kinematic)
FACTORING ALGEBRAIC EXPRESSIONS
Fractions Fractions and Their Forms Operating Fractions
OPERATIONS ON ALGEBRAIC FRAC TIONAL FORMS A. Addition and Subtraction Example : 1. + =
Fungsi Kepekatan Peluang Khusus Pertemuan 10
Master data Management
ELASTIC PROPERTIS OF MATERIAL
Matematika PERSAMAAN KUADRAT Quadratic Equations Quadratic Equations
Physics Quantities Vector Quanties Scalar Quantities Consist of.
How Can I Be A Driver of The Month as I Am Working for Uber?
Simultaneous Linear Equations
Operasi Matriks Dani Suandi, M.Si..
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
SIMILES. The comparison is carried out using the words ‘like’ as etc. Example : 1. as free as a bird. The word ‘free’ is compared with the word ‘bird’
By Yulius Suprianto Macroeconomics | 02 Maret 2019 Chapter-5: The Standard of Living Over Time and A Cross Countries Source: http//
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
HANDLING RUSH PRESIDENT UNIVERSITY NURLAELA RIZKINA.
Transcript presentasi:

REAL NUMBERS EKSPONENT NUMBERS

Properties of the Exponent Numbers 2  2  2  2  ...  2 Symbolized by 2n Factor n 3  3  3  3  ...  3 Symbolized by 3n Factor n 8  8  8  8  ...  8 Symbolized by 8n Factor n Defined by: 1) an = a a a a  . . . a Factor n 2) a1 = a Hal.: 2 Isi dengan Judul Halaman Terkait

Multiplication of the Exponent Numbers a  a  a  …  a      a a  a  …  a p factor number a q factor number a (p + q) factor number a means ap+q  ap  aq = ap+q Example : x5  x 12= x5+12 = x17 32  33 = 32+3 = 35 76  713= 76+13 = 719 Hal.: 3 Isi dengan Judul Halaman Terkait

The Division of Exponent Number ap = ap-q, a = 0 aq Examples : 1. 54 : 52 = 54-2 = 52 = 25 2. Hal.: 4 Isi dengan Judul Halaman Terkait

The Exponentiation of Exponent Number (ap)2 = ap, ap, ap … ap… q factor = ap.q So (ap)q = ap.q Examples : 1. (52)3 = (5)2.3 = 56 = 15625 2. = 33 = 27 Hal.: 5 Isi dengan Judul Halaman Terkait

The Exponent of Double Multiplication or Numbers Greater (ab)p = (ab) (ab) (ab)  . . . (ab) p factor (ab) = (a  b)  (a  b)  (a  b)  . . .  (a  b) p factor a and p factor b = (a  a  a  . . . a)  (b  b  b  . . . b) According to definition According to definition p faktor a p faktor a p factor a p faktor b p faktor b p factor b = ap  bp = apbp So (ab)p =apbp Examples : (3 7)5 = 1. 215 = 3575 2. 125 = (2 2  3)5 = 25 25  35 = 210  35 = 21035 Hal.: 6 Isi dengan Judul Halaman Terkait

The Exponent Fraction Numbers a  a  a  a  a  a …  a _______________________ = a  a  a...  a ap : aq = (p >q) a a  a … a p – q factor q factor number a = athe exponent ? Means  ap : aq = ap ‑ q = ap-q Examples : 36 : 34 = 36 ‑ 4 = 32 713 : 78 = 713-8 = 75 Hal.: 7 Isi dengan Judul Halaman Terkait

The Exponent Fraction Numbers p factor p factor number a a  a  a  a  a  a …  a ap _______________________ ____ = = b  b  b  b  b  b …  b bp p factor number b ap So : ____ bp Hal.: 8 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait Zero Exponent Number If p, q are positive integer anumber and p = q then ap-q = a0 To determine the value of zero exponent number, look at this explanation below! a0 = ap-p ap = ap = 1 So, for every a R and a = 0 then we have a0 = 1 Hal.: 9 Isi dengan Judul Halaman Terkait

The Negative Exponent Number ap = a0-p = a-p 1 a-p = ap a0 1 ap = ap So, for every a R, a = 0, and positive integer number then we have a-p = or ap = 1 a-p Examples : 1 5 1. 5-5 = 2. Hal.: 10 Isi dengan Judul Halaman Terkait

Fraction Exponent Numbers The exponent number of which is exponent by n can be rationalize as follows : (a ) p q q p q p q p q p q = a , a , a , … a as much as q a q. p q = ap = p (a ) q = is degined as exponent root at q from ap, then p = a q Hal.: 11 Isi dengan Judul Halaman Terkait

Fraction Exponent Numbers Examples : 1. 2. 3. 4. Hal.: 12 Isi dengan Judul Halaman Terkait

The Properties of Exponent Numbers Operation If a, b are real numbers, and p, q are integer numbers, then : ap  aq = ap+q ap : aq = ap-q ; a  0 (ap)q = apq (ab)p = ap bp . a-p = ; a  0. a0 = 1, a  0 b ; b  0 Hal.: 13 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait Roots 1. The Definition of Roots As we have discussed before, that Roots are numbers in the root symbol which cannot produce rational numbers Examples : Meanwhile : Because : 1, 2, and 8 are not irrational numbers Hal.: 14 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait Roots 2. Simplifying Roots Roots can be simplified by changing the number in the root into two numbers which one of them can be rooted and the other can not be rooted. Examples : 1. 2. Hal.: 15 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait Roots 3. Root Operation Operation base for a ≥ 0 and b ≥ 0 Addition and subtraction can be simplified if the roots are the same kind. Example : = = = Multiplication of roots using properties Examples : 1. 2. Hal.: 16 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait Roots Division of Roots (i) form Examples : 1. 2. Hal.: 17 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait Roots (ii) form Examples : 1. = = = = = 2. = = = = Hal.: 18 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait Roots (iii) form Example : = = = = Hal.: 19 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait Roots 4. Solving the exponent equation Properties used : ap = aq p = q Examples : Find the values of x that satisfy the following equations : 1. = 64 2. = Hal.: 20 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait Roots Answer : = 1. = 64 2. ↔ = 43 ↔ = ↔ 3x = 3 ↔ = ↔ x = 1 ↔ = ↔ = ↔ = ↔ = Hal.: 21 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait Logarithm Look at : ab = c ab = …. find the result of exponent …b = c find the exponent root of b from c a... = c find the exponent from a, so that the result is c = find the logarithm of base a from c number = alog c = … alog b = c  ac = b by a > 0 , a  1 and b > 0 a. Is base logarithm number b. Is number written in logarithm Hal.: 22 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait Logarithm The Properties If a > 0 , a  1 , m > 0 , n > 0 and x  R, then : alog ax = x alog (m.n) = alog m + alog n alog (m/n) = alog m - alog n alog mx = x. alog m alog m = If g > 0 , g  1 etc. an log b = alog b an log bm = alog b Hal.: 23 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait Logarithm Examples : 1. = 3 2. = 3 3. = 4. = = = 5 5. = = = 1 6. = = = 12 7. = = 8. = = = 1 9. = = = 6 Hal.: 24 Isi dengan Judul Halaman Terkait