Rancangan Acak Lengkap

Slides:



Advertisements
Presentasi serupa
RANCANGAN ACAK KELOMPOK (RANDOMIZED BLOCK DESIGN) atau RANCANGAN KELOMPOK LENGKAP TERACAK (RANDOMIZED COMPLITE BLOCK DESIGN) Prof.Dr. Kusriningrum.
Advertisements

Rancangan Acak Lengkap
PENGERTIAN DASAR Prof.Dr. Kusriningrum
ANALISIS RAGAM SEDERHANA
RANCANGAN BUJURSANGKAR LATIN ( LATIN SQUARE DESIGN)
Rancangan Acak Kelompok
Rancangan Acak Lengkap
VIII. RANCANGAN PETAK TERBAGI (RPT)
Rancangan Acak Kelompok Lengkap (RAK)
Percobaan satu faktor (single factor exp.)
Percobaan Berfaktor Perlakuan : kombinasi antara taraf faktor satu dengan taraf faktor yang lain Penempatan perlakuan dalam : RAL, RAK, SPLIT PLOT atau.
Analisis Peragam (Kovarians) pada RAK
Contoh Penerapan ANCOVA Pada RAL
PERCOBAAN FAKTORIAL DAN TERSARANG NUR LAILATUL RAHMAH, S.Si., M.Si.
NUR LAILATUL RAHMAH, S.Si., M.Si.
STATISTIK INDUSTRI 1 MATERI KE-13 PEMBANDINGAN BERGANDA
VII. RAK FAKTORIAL Percobaan RAK pola faktorial adalah penelitian dengan rancangan dasar RAK dan faktor perlakuan labih dari atau sama dengan 2. Contoh.
Rancangan Acak Kelompok
Rancangan Acak Lengkap (RAL) (Completely Randomized Design)
RANCANGAN ACAK KELOMPOK (RANDOMIZED BLOcK Design)
UNSUR DASAR PERANCANGAN PERCOBAAN, KERAGAMAN, MODEL PERCOBAAN
RANCANGAN ACAK LENGKAP FAKTORIAL
RANCANGAN BUJUR SANGKAR LATIN (RBSL) (LATIN SQUARE DESIGN)
RANCANGAN ACAK LENGKAP (RAL) COMPLETTED RANDOMIZED DESIGN (CRD)
RANCANGAN BUJUR SANGKAR LATIN (RBSL) (LATIN SQUARE DESIGN)
Rancangan Acak Lengkap
PEMBANDINGAN ORTOGONAL ( Prof.Dr. Kusriningrum )
STATISTIKA INDUSTRI I RANCANGAN PERCOBAAN:
UJI LANJUT PEMBANDINGAN BERGANDA
RANCANGAN ACAK LENGKAP (FULLY RANDOMIZED DESIGN, COMPLETELY RANDOMIZED DESIGN) Untuk percobaan yang mempunyai media atau tempat percobaan yang seragam.
RANCANGAN ACAK KELOMPOK (RANDOMIZED BLOcK Design)
Perancangan Percobaan (Rancob)
RAL (Rancangan Acak Lengkap)
Rancangan Acak Lengkap (RAL) (Completely Randomized Design)
Forcep Rio Indaryanto, S.Pi., M.Si
RANCANGAN ACAK KELOMPOK LENGKAP
UJI F/UJI RAGAM (ANOVA)
RANCANGAN KELOMPOK TAK LENGKAP SEIMBANG (Incomplete Block Design)
STATISTIKA Pertemuan 10-11: Pengantar Rancob dan Rancangan Acak Lengkap, Uji Lanjutan Dosen Pengampu MK:
Uji Lanjut: Uji Berganda Duncan (DMRT) (Duncan's Multiple Range Test)
Rancangan Bujur Sangkar Latin
RANCANGAN ACAK KELOMPOK
RANCANGAN BUJUR SANGKAR LATIN (RBL)
Rancangan Cross-Over Dalam kondisi-kondisi tertentu pemberian perlakuan dilakukan secara serial dimana setiap objek diterapkan seluruh perlakuan pada periode.
Rancangan Bujur Sangkar Latin (RBSL)
Rancangan Bujur Sangkar Latin (Latin Square Design)
Pertemuan 21 Penerapan model not full rank
Pertemuan 23 Penerapan model not full rank
3 b. Rancangan Acak Lengkap (Ulangan Tidak Sama)
RANCANGAN ACAK LENGKAP (RAL)
NUR LAILATUL RAHMAH, S.Si., M.Si.
Rancangan Satu Faktor Rancangan Acak Lengkap
Materi Pokok 21 RANCANGAN KELOMPOK
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Pertemuan 24 Penerapan model not full rank
RANCANGAN ACAK KELOMPOK (RANDOMIZED BLOCK DESIGN) atau RANCANGAN KELOMPOK LENGKAP TERACAK (RANDOMIZED COMPLITE BLOCK DESIGN) Prof.Dr. Kusriningrum.
Rancangan Acak Kelompok Lengkap (RAK)
RANCANGAN ACAK LENGKAP (FULLY RANDOMIZED DESIGN, COMPLETELY RANDOMIZED DESIGN) Untuk percobaan yang mempunyai media atau tempat percobaan yang seragam.
Percobaan satu faktor (single factor exp.)
RANCANGAN SPLIT PLOT YAYA HASANAH.
UJI BEDA RATAAN.
RANCANGAN ACAK LENGKAP
Dalam Rancangan Acak Kelompok (RAK)
Perbandingan Berganda
RANCANGAN ACAK KELOMPOK (RAK)
Rancangan Acak Lengkap
STATISTIKA 2 8. ANOVA OLEH: RISKAYANTO
MEMBEDAKAN LEBIH DARI 2 PERLAKUAN
MEMBEDAKAN LEBIH DARI 2 PERLAKUAN
MEMBEDAKAN LEBIH DARI 2 PERLAKUAN
Transcript presentasi:

Rancangan Acak Lengkap (RAL) Completely Randomized Design Atau Fully Randomized Design

CIRI - CIRI R.A.L. : 1. Media atau bahan percobaan “seragam” (dapat dianggap se- ragam ) 2. Hanya ada satu sumber kera- gaman, yaitu perlakuan (disam- ping pengaruh acak)

Yij = nilai pengamatan /observasi pada perlakuan ke i, ulangan ke j Model Matematika RAL: . Yij = μ + Τi + εij i = 1, 2, …… , a j = 1, 2,………., n Yij = nilai pengamatan /observasi pada perlakuan ke i, ulangan ke j μ = nilai tengah umum/ rata-rata total Τi = pengaruh /efek perlakuan ke i εij = pengaruh /efek acak random (kesalahan percobaan) pada perlakuan ke i dan ulangan ke j a = banyaknya perlakuan n = banyaknya ulangan

ULANGAN pada RAL : Diperoleh dari: Derajat bebas galat RAL ≥ 15 a ( n – 1 ) ≥ 15 t = banyaknya perlakuan n = banyaknya ulangan Contoh: Diketahui jumlah perlakuan yang diberikan a = 3 Maka ulangan minimal yang diperlukan: a( n – 1 ) ≥ 15 3 ( n – 1 ) ≥ 15 3n – 3 ≥ 15 3n ≥ 18 → n = 18/3 = 6

C3 B1 D2 A4 E2 A1 D1 F3 A2 C1 F1 B3 B2 F4 E3 D3 B4 C2 A3 D4 F2 E1 C4 Cara Pengacakan RAL secara acak lengkap Misalnya: Perlakuan A, B, C, D, E dan F Ulangan 4 kali A1, A2, A3, A4 B1, B2, B3, B4 dst diperoleh: 6 x 4 = 24 satuan percobaan C3 B1 D2 A4 E2 A1 D1 F3 A2 C1 F1 B3 B2 F4 E3 D3 B4 C2 A3 D4 F2 E1 C4 E4

PENGOLAHAN DATA dan SIDIK RAGAM Percobaan dengan t perlakuan dan n ulangan Perlakuan Ulangan Total 1 2 . . . . . . . . . . . . . . n 1 2 . a Y11 Y12 . . . . . . . . . . . . . Y1n Y21 Y22 . . . . Ya1 Ya2 Yan Y1. Ya. Y.. Rerata Y1. Y2. Yt .

a Hasil pengamatan yang mendapat Y 1 2 = perlakuan 1 dan ulangan ke 2 j = 1 Faktor Koreksi = FK = —— JKT = ∑ ∑ Yi j - FK JKG = JKT - JKP JKP = ∑ ─── - FK Y. . 2 a x n a n 2 i = 1 J = 1 a Yi . 2 i = 1 n

Sidik Ragam = Analisis Ragam (Analysis of variance = ANOVA) Sumber Keragaman ( S.K.) Derajat Bebas (d.b.) Jumlah Kuadrat (J.K.) Tengah (K.T.) Fhit F tabel 0,05 0.01 Perlakuan Galat a – 1 a(n –1) JKP JKG KTP KTG T o t a l a n - 1 JKT

(1). Fhitung < Ftabel → tidak berbeda nyata (non significant) ↓ JKP JKG JKT KTP = —— KTG = —— KTT = —— a - 1 a(n-1) an –1 KTP Fhit.= —— KTT ≠ KTP + KTG KTG Kemungkinan akan diperoleh: (1). Fhitung < Ftabel → tidak berbeda nyata (non significant) ↓ Berarti: - terima H0 ( tolak H1 ) - tidak terdapat perbedaan di antara perlakuan

(2). Fhitung ≥ Ftabel 0,05 → berbeda nyata (significant), Fhitung ≥ Ftabel 0,01 → berbeda sangat nyata (highly significant) ↓ Berarti: - terima H1 (tolak H0) - salah satu atau lebih dari perla- kuan yang diberikan, berbeda dengan perlakuan yang lain Perlu uji lebih lanjut untuk menentukan perlakuan-perlakuan mana yang berbeda nyata satu sama lain

Contoh: Penelitian menggunakan RAL dan Cara pengolahan hasilnya Penelitian ingin mengetahui pengaruh 3 macam ransum: A = ransum setempat B = ransum + 0,1% Pfizer Penicilin Feed Supplement C = ransum + 0,1% Pfizer Teramycin Animal Mix terhadap berat badan ternak babi. Tersedia anak-anak babi umur 4½ bulan, sebanyak 21 ekor dilahirkan pada waktu yang sama, dengan keadaan yang “seragam” ( jantan semua, dan dengan berat badan yang relatif sama) [Dalam hal ini semua “sama” kecuali perlakuan → RAL ]

A2 B3 C7 B6 A4 C5 B2 C6 B4 A5 C4 B1 A3 C1 C3 A1 B7 A6 C2 B5 A7 - Rancangan acak lengkap dgn: perlakuan a = 3 ulangan n = 21/3 = 7 Hasil pengacakan yang dilakukan: A2 B3 C7 B6 A4 C5 B2 C6 B4 A5 C4 B1 A3 C1 C3 A1 B7 A6 C2 B5 A7

Yi j = μ + זi + εi j dengan: i = 1, 2, 3. Model umum matematika penelitian: Yi j = μ + זi + εi j dengan: i = 1, 2, 3. j = 1, 2, . . . .. 7 Yi j = bobot babi yang menerima perlakuan ransum ke i pada ulangan ke j μ = nilai tengah umum זi = pengaruh perlakuan ransum ke I εi j = pengaruh acak (kesalahan percobaan) pada perlakuan ransum ke I dan ulangan ke j Hasil penelitian → Bobot babi pada akhir penelitian: (A): 70,2; 61,0; 87,6; 77,0; 68,6; 73,2 dan 57,4 kg (B): 64,0; 84,6; 73,0; 79,0; 81,0; 78,6 dan 71,0 kg (C): 88,4; 82,6; 90,2; 83,4; 80,8; 84,6 dan 93,6 kg

Ulangan Perlakuan T o t a l A B C 1 2 3 4 5 6 7 Rerata 70,2 64,0 88,4 Penyelesaian: susun hasil tsb dalam tabel berikut : Bobot babi pada akhir percobaan Ulangan Perlakuan T o t a l A B C 1 2 3 4 5 6 7 Rerata 70,2 64,0 88,4 61,0 84,6 82,6 87,6 73,0 90,2 77,0 79,0 83,4 68,6 81,0 80,8 73,2 78,6 84,6 57,4 71,0 93,6 495,0 531,2 603,6 70,71 75,89 86,23 1629,8

Menghitung Jumlah Kuadrat: F.K. = ─── = = 126488,0012 JKT = ∑ ∑ Yi j - FK = (70,2) + (61,0) + . . . . . . + (93,6) - FK = 1840,9981 JKP = ∑ ─── - FK (495,0) + (531,2) + (603,6) 7 = 873,6267 2 2 (1629,8) y .. n x a 7 x 3 a n 2 j = 1 i = 1 2 2 2 2 a Yi . n i = 1 2 2 2 - FK =

JKG = JKT - JKP = 1840,9981 - 873,6267 = 967,3714 Menghitung Kuadrat Tengah: JKP 873,6267 a – 1 3 - 1 JKG 967,3714 a (n – 1) 3 (7- 1) Menghitung Fhitung : Fhitung = = 8,13 KTP = = = 436,8134 KTG = = = 53,7429 436,8134 53,7429

Sidik Ragam pengaruh Perlakuan terhadap bobot babi S.K. d.b. J. K K.T. Fhitung F tabel 0,05 0,01 Perla- kuan Galat 2 18 873,6267 967,3714 436,8134 53,7429 8,13** 3,35 6,01 Total 20 1840,9981 Fhitung > Ftabel 0,01 terdapat perbedaan sangat nyata ↓ Tiga macam ransum pakan (A, B dan C) memberikan perbedaan yang sangat nyata terhadap bobot babi

Ransum pakan mana yang paling baik pengaruhnya terhadap bobot babi? → Perlu uji lebih lanjut dengan Uji Pembandingan Berganda: - Uji BNT - Uji BNJ KOEFISIEN KERAGAMAN: - Uji Jarak Duncan s √ KTG y. . y. . √53,7429 1629,8 7 x 3 (Kemungkinan terdapat kesalahan da- lam pengamatan atau pencatatan data) K.K.= x 100% = x 100% x 100% = 9,45% = < (15 – 20%)

Percobaan memakai R.A.L. → memungkinkan perlakuan perlakuan yang diberikan mempunyai jumlah ulangan tidak sama. Suatu percobaan dilaksanakan dengan Rancangan Acak Lengkap, dengan t perlakuan dan ulangan untuk: perlakuan 1 mendapat sebanyak n1 ulangan, perlakuan 2 mendapat sebanyak n2 ulangan, perlakuan 3 mendapat sebanyak n3 ulangan, . . perlakuan t mendapat sebanyak na ulangan.

Perlakuan Total 1 2 . . . . . . . . a 1 Y1. Y2. . . . . . . Ya. Y.. Hasil tersebut sbb.: Ulangan Perlakuan Total 1 2 . . . . . . . . a 1 2 . Y11 Y21 . . . . . . Ya1 Y12 Y22 . . . . . . Ya2 . . . . Y2n . Y1n . Yan T o t a l Y1. Y2. . . . . . . Ya. Y.. Rerata 2 1 a

Menghitung Derajat Bebas: d.b. perlakuan = a – 1 d.b. galat = ∑ ( ni – 1) = n1 + n2 + . . . + na – a d.b. total = ∑ ni - 1 = n1 + n2 + . . . + nt – 1 Menghitung Jumlah Kuadrat; JKT = ∑ ∑ Yi j - JKG = JKT - JKP JKP = ∑ - a i = 1 a i = 1 2 Y. . ni a 2 a ∑ ni j =1 i = 1 i = 1 2 Y. . a 2 Yi . ni a ∑ ni i = 1 i = 1

Sidik Ragam untuk RAL dengan ulangan tak sama S.K. d.b. J.K. K.T. Fhitung Ftabel 0,05 0,01 Perla- kuan Galat a - 1 ∑ ( ni – 1) JKP JKG KTP KTG Total ∑ ni - 1 JKT a i = 1 a i = 1

Menghitung Kuadrat Tengah & Fhitung: JKP JKG a – 1 KTP = KTG = a ∑ ( ni – 1) KTP KTG i = 1 Fhitung = Contoh soal : Percobaan pada tikus, dengan 4 macam perlakuan ransum yang berbeda. Percobaan dilaksanakan dengan RAL. Pa- da akhir percobaan pertambahan berat badan tikus (dalam gram) sebagai berikut:

Pertambahan Berat Badan Tikus (gram) Ulangan Perlakuan A B C D T o t a l 1 2 3 4 5 6 7 8 3,42 3,17 3,34 3,64 3,96 3,63 3,72 3,93 3,87 3,38 3,81 3,77 4,19 3,47 3,66 4,18 3,58 3,39 3,55 4,21 3,76 3,41 3,51 3,88 3,84 3,55 3,96 3,44 3,91 Total 26,62 27,44 21,59 31,48 107,13 Rerata 3,80 3,43 3,60 3,94 14,77

Apakah terdapat perbedaan nyata dari pengaruh pembe- rian ke-4 macam ransum terhadap pertambahan berat badan tikus tersebut? Penyelesaian: Faktor Koreksi = FK = = = JKT = (3,42) + (3,96) + . . . . + (3,91) - FK = 2,061 JKP = + + + = JKG = 2,061 - 1,160 = 0,901 2 2 y. . (107,13) a 7 + 8 + 6 + 8 ∑ ni 2 i = 1 (107,13) 29 2 2 2 2 2 2 (26,62) (27,44) (21,59) 2 (31,48) 1,160 FK 8 6 7 8

S.K. d.b. J.K. K.T. Fhitung 3 0,387 2,99 Total 28 d.b. perlakuan = 4 – 1 = 3 d.b. galat = (7 + 8 + 6 + 8) – 4 = 25 d.b. total = ( 7 + 8 + 6 + 8) – 1 = 28 Sidik ragam: S.K. d.b. J.K. K.T. Fhitung F tabel 0,05 0,01 Perlakuan Galat 3 25 1,160 0,901 0,387 0,036 10,75 ** 2,99 4,68 Total 28 2,061 Kesimpulan: Ke-4 ransum tersebut berpengaruh sangat nya- ta terhadap pertambahan berat badan tikus.

Mencari Nilai Ftabel 0.05 dengan Interpolasi: Untuk: d.b.perlakuan = 12 dalam daftar tabel F d.b. sisa (galat) = 35 tidak tercantum ↓ d.b. d.b. perlakuan perlu dilakukan galat 10 12 interpolasi 0,05 0,01 1 . 2 . selisih dari 34 ke 35 = . . ¼ x 0,03 = 0,0075 . . = 0,01 34 selisih 1 2,05 4 35 ? Selisih 0,03 Jadi nilai dari 35 = 38 selisih 3 2,02 2,05 – 0,01 = 2,04

ANALISIS PARAMETRIK & NON PARAMETRIK Nominal Tidak Normal Non Parametrik Ordinal Tidak Normal Transformasi Interval Periksa Mendekati Parametrik Normalitas Normal Ratio

ANALISIS PARAMETRIK ANALISIS NON PARAMETRIK 1. Uji t berpasangan Wilcoxon test 2. Uji t tidak berpasangan Mann – Whitney test 3. Rancangan Acak Lengkap Uji Kruskal Wallis 4. Rancangan Acak Kelompok Uji Friedman 5. Rancangan Bujursangkar Latin 6. Percobaan Faktorial

TUGAS PEKERJAAN RUMAH P E R L A K U A N P Q R S T 1 2,2 2,4 3,0 2,8 Ulangan P E R L A K U A N P Q R S T 1 2,2 2,4 3,0 2,8 2,6 2 2,1 2,9 3,1 2,5 3 1,9 2,3 4