Sudut Dalam Bangun Ruang

Slides:



Advertisements
Presentasi serupa
MENGGAMBAR BANGUN RUANG
Advertisements

VOLUME KUBUS DAN BALOK copy right  Mediane Matematika
BAB 9 DIMENSI TIGA.
Dimensi tiga jarak.
DIMENSI TIGA Standar Kompetensi:
3. Menggambar dan menghitung besar sudut antara dua bidang.
GEOMETRI RUANG DIMENSI TIGA
MATEMATIKA DIMENSI TIGA o l e h 1 N a m a : Suprapto
Media Pembelajaran Berbasis Teknologi Informasi & Komunikasi
PROYEKSI.
SK/KD INDIKATOR MATERI LATIHAN TEST.
DIMENSI TIGA Oleh : Dra. Enok Maesaroh.
Kedudukan Titik, Garis, dan Bidang
BANGUN RUANG KUBUS MEDIA PEMBELAJARAN Oleh: NI KETUT SUNARTI
BANGUN RUANG SISI DATAR (KUBUS & UNSUR- UNSURNYA)
ASSALAMU’ALAIKUM WR.WB
Balok Yang akan kita pelajari: Unsur-unsur balok Luas permukaan balok
KUBUS Karya : Nuratikah NPM :
Dimensi Tiga (Jarak) SMA 5 Mtr.
Kubus.
ﺒﺴﻢﺍﷲﺍﻠﺮﺣﻣﻥﺍﻟﺮﺣﯿﻢ ASSALAMU'ALAIKUM Wr. Wb..
Jarak Definisi: Jarak antara dua buah bangun adalah panjang ruas garis penghubung terpendek yang menghubungkan dua titik pada bangun-bangun tersebut.
MENENTUKAN JARAK PADA BANGUN RUANG
SEGI EMPAT SEGI TIGA SEGI BANYAK
Dimensi Tiga X MIA 2 Ayu Amrita (03) Fatima Rahmanita (09)
GEOMETRI.
Nama Kelompok : 1. AMALIA FIDYA W. S
Bidang adalah perluasan beberapa titik atau garis
DIMENSI TIGA KELAS X SEMESTER 2.
Tugas media pembelajaran
RUANG DIMENSI TIGA OLEH TIM MGMP MAT SMAN 1 GLENMORE
Bangun ruang By : Sablis Salam.
Dimensi Tiga (Proyeksi & Sudut).
Pembelajaran Berbasis IT
MENENTUKAN JARAK DALAM RUANG
Standar Kompetensi : Menentukan jarak yang melibatkan titik, garis, dan bidang . Kompetensi Dasar : Menentukan jarak dari titik ke garis dan dari titik.
Media Pembelajaran Matematika Jarak Pada Bangun Ruang
Ekayani Khusmawati Syukrillah
GEOMETRI ●.
MENGENAL KUBUS Pada Gambar di samping di perlihatkan kubus ABCD.EFGH
GEOMETRI ●.
KEDUDUKAN GARIS TERHADAP BIDANG
BANGUN RUANG Pengertian
Dosen Pengampu : Nugroho,SP.
DIMENSI TIGA Standar Kompetensi:
Disusun oleh : Nur Maidah Naimah (A )
VOLUME DAN LUAS PERMUKAAN KUBUS
BANGUN RUANG SISI DATAR
RUANG DIMENSI TIGA SK / KD INDIKATOR MATERI LATIHAN UJI KOMPETENSI.
TUGAS MEDIA PEMBELAJARAN berbasis ict MATEMATIKA
RUANG DIMENSI TIGA STANDAR KOMPETENSI: Menggunakan sifat dan aturan geometri dalam menentukan kedudukan titik, garis, dan bidang; jarak; sudut; dan volume.
VENISSA DIAN MAWARSARI, M.Pd
Pengertian Balok Perhatikan gambar berikut ini
Tugas media pembelajaran
GEOMETRI Titik, Garis dan Bidang.
KUBUS DAN BALOK Bagian Kubus/Balok Jumlah Keterangan Rusuk 12
KUBUS UNSUR-UNSUR KUBUS.
Assalamualaikum.
MATEMATIKA TRIGONOMETRI
Disusun oleh Faleny Oktaria
DIMENSI TIGA (JARAK) DI SUSUN OLEH: FAJRI ASH-SHIDDIQI NOVKA NURDIN
MATEMATIKA BANGUN RUANG KELAS IV SEKOLAH DASAR PROFIL STANDAR KOMPETENSI DASAR INDIKATOR BAHAN AJAR LATIHAN SOAL.
Nisa arifiani DIMENSI TIGA JARAK.
BANGUN RUANG BALOK Oleh: Ana Marita
JARAK DAN SUDUT Anton Dimas Fikri Achmad Darmawan M. Nirwan Firdausi
PRESENTASI BANGUN RUANG ALAN PRIYA SATRIO UTOMO KELAS : VIII B ABSEN : 03 ALAN PRIYA SATRIO UTOMO KELAS : VIII B ABSEN : 03 KUBUS.
Dimensi Tiga (Proyeksi & Sudut).
DIMENSI TIGA Standar Kompetensi:
1 Dimensi Tiga (Jarak ). 2 KOMPETENSI DASAR : Menganalisis titik, garis dan bidang pada geometri dimensi tiga.
1. 2 Setelah menyaksikan tayangan ini anda dapat Menentukan jarak antara unsur-unsur dalam ruang dimensi tiga.
Transcript presentasi:

Sudut Dalam Bangun Ruang Oleh : Diana Bhakti 35.13.3040 PMM-4/Sem.V UIN SU

5

4

3

2

1

v

1 Profil Penulis 2 Materi 3 Contoh 4 Latihan Soal

Profil Penulis Hai… Nama saya diana bhakti, kerap dipanggil diana, lahir di siumbut-baru, 07 Juli 1995. Lebih lanjut, temukan saya di Dianabhakti.wordpress.com Ig : dianabhakti44 Email: dianabhakti44@gmailcom

Sudut Dalam Bangun Ruang 1. Sudut Antara Dua Garis Sudut antara dua garis adalah sudut lancip atau siku-siku antara kedua garis tersebut. Dengan demikian maka sudut antara dua garis bersilangan adalah sudut lancip atau siku-siku yang terbentuk oleh kedua garis bersilangan (tidak sebidang).

Sudut antara Garis dan Bidang

Perhatikan Gambar 2.4 (ii). Garis-garis Dengan pada bidang Garis dikatakan tegaklurus bidang , jika garis tegaklurus pada semua garis pada bidang yang melalui titik tembusnya. Perhatikan Gambar 2.4 (ii). Garis-garis Dengan pada bidang Karena dua garis berpotongan menentukan keberadaan sebuah bidang (melalui 2 garis berpotongan dapat dibuat tepat sebuah bidang), maka: Jika garis tegaklurus pada dua buah garis berpotongan pada bidang maka garis

Untuk memberikan nilai besar sudut (dan juga jarak) antara dua unsur ruang dipilih ukuran terkecilnya. Dalam hal ini sudut yang dimaksud adalah sudut terkecil antara garis g garis-garis

Yuuk.. Dilihat

LATIHAN ! 1. Sebuah kubus ABCD.EFGH dengan panjang rusuk p cm. Tentukanlah sudut antar bidang ACH dengan bidang ACF. 2. Pada kubus ABCD.EFGH. Jika AP adalah perpanjangan rusuk AB sehingga AB : BP = 2 : 1 dan FQ adalah perpanjangan FG sehingga FP : FG = 3 : 2 maka tentukanlah jarak antara titik P dan Q. 3. Pada kubus ABCD.EFGH dengan panjang rusuk a cm. Tentukanlah jarak bidang ACH dengan bidang BEG. 4. Sebuah balok ABCD.EFGH memiliki panjang rusuk-rusuk AB = 6 cm, AD = 8 cm, BD = 10 cm, dan DH = 24 cm. Hitunglah a. Panjang HB b. Besar sudut BDC c. Besar sudut antara HB dan bidang CDHG d. Besar sudut antara HB dan bidang ABCD

5. Perhatikan gambar balok berikut : Hitunglah : a. Panjang HP jika P adalah tengah-tengah BC b. Besar sudut antara HP dan EFGH c. Besar sudut antara HP dan FG d. Besar sudut antara DF da n bidang EFGH

Terimah Kasih