FACTORING ALGEBRAIC EXPRESSIONS

Slides:



Advertisements
Presentasi serupa
PERSAMAAN DAN PERTIDAKSAMAAN
Advertisements

Klik Esc pada Keyboard untuk mengakhiri Program
Soal No 17 halaman 66 Find a) the coordinates of the foci and vertices for hyperbola whose equations given, b) equation of the asymptotes. Sketch the curve.
Cartesian Coordinate System
RELASI  Bola  Basket  Tari  Padus  I. Diagram panah
Diferensial Fungsi Majemuk
Relation
Digital Logic Symbols For Logic gates
RANGKAIAN LOGIKA KOMBINASIONAL
Korelasi Linier KUSWANTO Korelasi Keeratan hubungan antara 2 variabel yang saling bebas Walaupun dilambangkan dengan X dan Y namun keduanya diasumsikan.
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
TEKNIK PENGINTEGRALAN
Rumus-rumus ini masihkah anda ingat?
GERAK LURUS.
Diferensial Fungsi Majemuk
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
1. Properties of Electric Charges 2. Coulomb’s law 3. The Electric Fields 4. Electrics Field of a Continuous Charge Distribution 5. Electric Field Lines.
Universitas Jenderal Soedirman Purwokerto FISIKA DASAR II Oleh : Mukhtar Effendi.
KELOMPOK 7 PEMBAHASAN DAN. Pertanyaan Kelompok 1 Hlm An architect is calculating the dimensions for a regular hexagon shaped window. If the height.
 1. Explaining the definition of linear equation with one variable.  2. Explaining the characteristics of linear equation with one variable. 3. Determining.
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
Tugas media pembelajaran Nama : Nafsul Mutmainah Kelas : VII C NIM : A
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Electric Field Wenny Maulina. Electric Dipole A pair of equal and opposite charges q separated by a displacement d is called an electric dipole. It has.
The eEquation of a Circle Adaptif Hal.: 2 Isi dengan Judul Halaman Terkait The eEquation of a Circle.
RELASI DAN FUNGSI Pertemuan II Kalkulus Nina Hairiyah, S.TP., M.Si
MATRIX Concept of Matrix Matrik.
Bilangan Bulat Matematika Diskrit.
MEKANIKA TEKNIK TI KESEIMBANGAN BENDA TEGAR
KOMUNIKASI DATA Materi Pertemuan 3.
IRISAN KERUCUT PERSAMAAN LINGKARAN.
VEKTOR VEKTOR PADA BIDANG.
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
HUKUM AMPERE.
Recurrence relations.
GEOMETRI SUDUT DAN BIDANG.
LIMIT FUNGSI LIMIT FUNGSI ALJABAR.
Fungsi, Persamaan Fungsi Linear dan Fungsi Kuadrat
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
FAKTORISASI SUKU ALJABAR DAN FUNGSI
Bab 2 Persamaan dan Fungsi Kuadrat
Produk Cartesius Relasi Relasi Khusus RELASI.
Klik Esc pada Keyboard untuk mengakhiri Program
Parabola Parabola.
VECTOR VECTOR IN PLANE.
FISIKA DASAR By: Mohammad Faizun, S.T., M.Eng.
BILANGAN REAL BILANGAN BERPANGKAT.
Two-and Three-Dimentional Motion (Kinematic)
REAL NUMBERS EKSPONENT NUMBERS.
RELASI Sub-bab 7.1.
Fungsi Oleh : Astri Setyawati ( )
Oleh : Hayani Hamudi, S.Pd.
2 x 2 x 2 is written as 2^3. 2 x 2 x 2 x 2 x 2 is written as 2^5
GEOMETRY GROUP 7 Loading... TRIANGLE Classifying Triangles The Pythagorean Theorem Special MATERI Classifying Triangles TRIANGLE The Pythagorean.
RELASI, FUNGSI & KORESPONDENSI 1-1
OPERATIONS ON ALGEBRAIC FRAC TIONAL FORMS A. Addition and Subtraction Example : 1. + =
ALJABAR - suku 3 : Pemfaktoran bentuk “ ax²+bx+c, a=1 “ :
Disusun oleh : KARLINA SARI ( ) ALIFA MUHANDIS S A ( )
FUNGSI Ade Rismanto, S.T.,M.M.
A. RELASI DAN FUNGSI Indikator : siswa dapat
Matematika PERSAMAAN KUADRAT Quadratic Equations Quadratic Equations
RELASI DAN FUNGSI OLEH: BUNDA MUSLICHATUN. S.PD.
Matematika Terapan 1 Materi 2 : Relasi.
Operasi Matriks Dani Suandi, M.Si..
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Transcript presentasi:

FACTORING ALGEBRAIC EXPRESSIONS Created by ﺟﻴﻄ for mathlabsky.wordpress.com Created by ﺟﻴﻄ for mathlabsky.wordpress.com

P Q P + Q P – Q P x Q FACTORING ALGEBRAIC EXPRESSIONS I. Arithmetical operations on algebraic : Adding Substracting Multiplying Dividing Exponentiating P Q P + Q P – Q P x Q 2x – 3 4x + 1 6x -2 -2x – 4 8x2 - 10x – 3 x + 2 2x – 1 3x + 1 -x + 3 2x2 + 3x – 2 2a – a2 2a 4a – a2 -a2 4a2 – 2a3 2(3 – a) 1 – a 7 – 3a 5 – a 6 – 8a + 2a2 4b - 1 (2b + 1) 6b 2b – 2 8b2 + 2b – 1

P Q P : Q P P2 P3 4a 2 2a 4a2 6a3 3a 2a2 12a – 4a2 6 – 2a 8a + 16 4 -3ab3 9a2b6 -27a3b9 4ab 16a2b2 64a3b3

II. Factoring Algebraic Expressions 12 ab2 – 9b3c2 = 3b2 (4a – 3bc2) 4x = 22.x 12ab2 = 22.3.a.b2 8 = 23 9b3c2 = 32.b3.c2 GCD = 22 = 4 GCD = 3.b2 Exercise 12xy2 + 4x2y3z 8x – 12y 24xyz2 + 9x2y 10xy3 + 2y2z 1. 4xy2 (3 + xyz) 2. 4 (2x - 3y) 3. 3xy (8z2 + 3x) 4. 2y2 (5xy + z)

III. Special form A. x2 + 2xy + y2 = (x + y) 2 B. x2 - 2xy + y2 = (x - y) 2 (x + y) 2 =(x + y)(x + y) (x - y) 2 =(x - y)(x - y) = x2 + xy + xy + y2 = x2 - xy - xy + y2 = x2 + 2xy + y2 = x2 - 2xy + y2 x2 + 4x + 4 = ( … + ...) 2 ( x + 2) 2 x2 - 6x + 9 = ( … - ...) 2 ( x - 3) 2

A. x2 + 2xy + y2 = (x + y) 2 B. x2 - 2xy + y2 = (x - y) 2 a2 + 4a + 4 Factor the following algebraic expressions! a2 + 4a + 4 16x2 – 24x + 9 4a2 – 4ab + b2 9m2 + 30mn + 25n2 25p2 + 70pq + 49q2 1. (a + 2)2 2. (4x - 3)2 3. (2a - b)2 4. (3m + 5n)2 5. (5p + 7q)2

a2 – b2 (2m) 2 – 32 x2 – 49 m2 – 121 64 – y2 1. (a – b)(a + b) C. x2 - y2 C. = (x - y)(x + y) (x – y )(x + y) = x2 + xy – xy - y2 = x2 - y2 a2 – b2 (2m) 2 – 32 x2 – 49 m2 – 121 64 – y2 1. (a – b)(a + b) 2. (2m – 3)(2m + 3) 3. (x – 7 )(x + 7) 4. (m – 11 )(m + 11) 5. (8 – y)(8 + y)

D. Factoring ax2 + bx + c, when a = 1 x2 + bx + c = (x + p)(x + q) Where c = p x q and b = p + q Example : 1. x2 + 10x + 16 ====> a = 1, b = 10, c = 16 p = …? q = …? … x … = 16 … + … = 10 8 2 8 2 x2 + 10x + 16  (x + 8)(x + 2) 2. x2 – x – 6 ====> a = 1, b = -1, c = -6 p = …? q = …? -3 … x … = -6 … + … = -1 2 x2 – x – 6  (x – 3)(x + 2) -3 2

a2 + 5a + 6 a2 + a – 6 (a + 3)(a + 2) (a – 2 )(a + 3) y2 + 6y + 9 Factor the following algebraic expressions! a2 + 5a + 6 a2 + a – 6 y2 + 6y + 9 y2 – 14y + 24 p2 + 4p – 5 (a + 3)(a + 2) (a – 2 )(a + 3) (y + 3)(y + 3) (y – 12)(y – 2) (p + 5)(p – 1)

E. Factoring ax2 + bx + c, when a ≠ 1 p + q = b p x q = a x c Example : 1. 2x2 + 7x + 6 ===> a = 2, b = 7, c = 6 p = …? q = …? … + … = 7 … x … = 12 4 3 4 3 2x2 + 7x + 6  2x2 + 4x + 3x + 6  2x2 + 4x + 3x + 6  2x(x + 2) + 3(x + 2)  (x + 2) (… + …) (2x + 3)

2. 6x2 + 13x - 5 ===> a = 6, b = 13, c = -5 p = …? q = …? … + … = 13 … x … = -30 -2 15 -2 15 6x2 + 13x - 5  6x2 - 2x + 15x - 5  6x2 - 2x + 15x - 5  2x(3x - 1) + 5(3x - 1)  (3x - 1) (… + …) (2x + 5)

IV. OPERATIONS ON ALGEBRAIC FRACTIONS Example:

LINES 1. SLOPE 2. GRAPHING LINEAR EQUATIONS 3. WRITINGLINEAR EQUATIONS 4. PARALLEL & PERPENDICULAR Created by ﺠﻴﻄ for mathlabsky.wordpress.com Created by ﺠﻴﻄ for mathlabsky.wordpress.com

Slope of a Line Slope (gradient) is a ratio of the change in y (vertical change) to the change in x ( horizontal change) The slope, denoted by m, of the line through the points and Is defined as follows: Y ● ● Invers X

Find the slope of each segment (a, b, c and d)!  3 -5 6 -3 a b c d Find the slope of each segment (a, b, c and d)! Lines with positive slope rise to the right Lines with negative slope fall to the right

k h Find the slope of line k and h! Slope of line 4 Slope of line 6 4 8

Linear equations can be written in different forms : Standard form and slope-intercept form. Form Equation Slope Standard Slope-intercept Example : Equation Form Slope standard standard Slope-intercept Slope-intercept standard Slope-intercept HOME

Y X Graphing Linear Equations To draw the line we need two point determine a line. We can find the X-intercept and Y-intercept. Y X Example : graph the line 2x + 3y = 12 To find X-intercept, let y = 0 ● (0 , 4) Thus, (6 , 0) is a point on the line To find Y-intercept, let x = 0 ● (6 , 0) Thus, (0 , 4) is a point on the line HOME

Writing Linear Equations 1. An equation of the line that passes through the point and has slope m is : Example : Find an equation of the line through (1 , 3) and its slope 2 Solution :

2. An equation of the line that passes through the point and is : Example : Find an equation of the line through (-1 , 4) and (2 , -3) Solution : HOME

Parallel and Perpendicular Lines Two lines are parallel if and only if their slope equal If slope k1 = m1 and slope k2 = m2 Parallel Two lines are Perpendicular if and only if the product of Their slope = -1 If slope h1 = m1 and slope h2 = m2 Perpendicular

Example : check the two lines parallel or perpendicular and Solution : Let slope the first line is ,then Let slope second line is , then The line are not parallel The line are Perpendicular

Exercise, check the two line parallel or perpendicular HOME

RELASI  Bola  Basket  Tari  Padus  I. Diagram panah II. Pasangan berurutan {(Ali, Bola), (Bea ,Tari), (Cita, Basket),(Cita, Padus)} Siswa Ekskul  Bola  Basket  Tari  Padus Ali  Bea  Cita  III. Cartesius Siswa Ekskul    Ali Bea Cita Padus  Tari  Basket  Bola  

Produk Cartesius n(AXB)=6 A x B = B x A ?  n(A x B) = n(B x A) Contoh : A = {a , b}  n (A) = 2 B = {1 , 2 , 3}  n(B) = 3 n(AXB)=6 A x B = B x A ? A x B = (a , 1) ….. B x A = (1 , a) …..  n(A x B) = n(B x A)

Pemetaan / Fungsi A ke B merupakan fungsi jika setiap anggota A mempunyai tepat 1 pasang anggota B A B A B A B A B a  b  c   1  2  3  4 a  b  c   1  2  3  4 a  b  c   1  2  3  4 a  b  c   1  2  3  4 BUKAN FUNGSI FUNGSI FUNGSI BUKAN FUNGSI O

A B Domain = daerah asal = {a , b, c } Kodomain = daerah hasil = {1, 2, 3, 4} Range = hasil = {1, 2, 3}  1  2  3  4 a  b  c 

A B Nilai dari f(2) atau bayangan dari 2 atau peta dari 2  1 1   3  5  7 1  2  3  Fungsi : Nilai dari f(2) atau bayangan dari 2 atau peta dari 2

Banyaknya pemetaan/fungsi A = {a , b , c} B = {1, 2) A B A B A B A B a  b  c  1 2 a  b  c  1 2 a  b  c  1 2 a  b  c  1 2 A B A B A B A B a  b  c  1 2 a  b  c  1 2 a  b  c  1 2 a  b  c  1 2

Contoh: A = {a , b , c} B = {1, 2) n (A) = 3 n (B) = 2

n (A) = n(B) Korespondensi satu-satu A B A B A B A B  A B Benar  A B Benar  A B Salah  A B Salah Definisi : fungsi yang memasangkan setiap anggota A (domain) tepat satu pada anggota B (kodomain) dan sebaliknya n (A) = n(B)

n (A) = n(B) = 3 maka banyaknya korespondensi satu – satu adalah ?  A B  A B  A B  A B  A B  A B

n (A) = n(B) = a  banyaknya korespondensi satu –satu adalah a !

UH-2 Senin 21 November 2011 Materi: Relasi Menyatakan relasi (diagram panah, pasangan berurutan, cartesius Produk cartesisu (AxB) Pemetaan/fungsi Banyak pemetaan/fungsi Nilai fungsi Korespondensi satu-satu