Thermodynamics of the Internal Combustion Engine

Slides:



Advertisements
Presentasi serupa
HUKUM KEDUA TERMODINAMIKA
Advertisements

Siklus Carnot.
BASIC ENGINE Drs.RUSMAN HADI.
KULIAH PERDANA TEKNIK MESIN
Chapter 6 SECOND LAW OF THERMODYNAMICS
TEKNOLOGI OTOMOTIF DASAR (2 sks TEORI) * Siklus Kerja Motor 2 & 4 Tak
Siklus Udara Termodinamika bagian-1
Hukum Termodinamika dan Boyle
FISIKA TERMAL BAGIAN 2.
MOTOR BAKAR Kuliah I.
FI-1101: Kuliah 14 TERMODINAMIKA
HEAT PUMP DAN HEAT ENGINE
Berkelas.
HUKUM II TERMODINAMIKA
Disusun Oleh : Ichwan Aryono, S.Pd.
Exercise Problem No. 5 Figure below shows a diagram of fluid power system for a hydraulic press used to extrude rubber patrs. The following data are known.
DAYA DI BIDANG PERTANIAN DR. IR. AGUS HARYANTO, M.P PS. KETEKNIKAN PERTANIAN UNIVERSITAS LAMPUNG 2009.
MOTOR BAKAR.
Sistem Pembangkit Tenaga Uap
2nd LAW OF THERMODYNAMICS
A. Agung Putu Susastriawan., ST., M.Tech
Thermodynamics.
Pure substance Substansi murni
The Second Law of Thermodynamics
Pertemuan Temperatur, Kalor, Perpindahan Kalor dan Termodinamika
Refrigeration Heat Pump.
Kelompok 6 Kimia Fisik 1 (Kelompok 6) Ersa Melani Priscilia Harry Crhisnadi Inzana Priskila Kinanthi Eka Merdiana Lidya Idesma.
Thermodinamika FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA
Gas Ideal Pert 5.
POWER PLANT.
IX. PRODUKSI KERJA DARI PANAS
HUKUM TERMODINAMIKA I.
FI-1101: Kuliah 14 TERMODINAMIKA
Hukum Termodinamika 2.
2nd Law of Thermodynamics
BAB 1 KONSEP DASAR.
Lecture 7 Thermodynamic Cycles
PANDANGAN UMUM TENTANG THERMODINAMIKA
FISIKA TERMAL Bagian I.
BAB IV PROSES THERMODINAMIKA MOTOR BAKAR
Energi dan Hukum 1 Termodinamika
Pertemuan 14 SISTEM TENAGA GAS.
TERMODINAMIKA Departemen Fisika
DAYA DALAM BIDANG PERTANIAN
TERMODINAMIKA dan Hukum Pertama
PERFORMA ENGINE.
TURBIN GAS.
FISIKA DASAR II HUKUM KEDUA TERMODINAMIKA
FISIKA TERMAL BAGIAN 2.
Internal combustion engines
TERMODINAMIKA II Semester Genap TA 2007/2008
Simple Ideal Gas Refrigeration Cycle
Simple Ideal Gas Refrigeration Cycle
PEMBANGKIT LISTRIK DIESEL
Presented by : Luailik Madaniyah ( )
Standar Kompetensi Menerapkan konsep termodinamika dalam mesin kalor
Hukum Pertama Termodinamika
Hukum II Termoinamika Mar’ie zidan ma’ruf ( )
Mesin panas dan Refrigerator
T E R M O D I N A M I K A d c.
MOTOR BAKAR MODUL I.
SIKLUS MOTOR BENSIN.
Termodinamika Nurhidayah, S.Pd, M.Sc.
Hukum-Hukum Termodinamika
DIESEL ENGINE, ELECTRIC MOTOR & GENERATOR MESIN DIESEL, MOTOR LISTRIK & GENERATOR 1.Jelaskan perbedaan utama mesin bensin dan mesin diesel! 2.Jelaskan.
Chapter 4 ENERGY ANALYSIS OF CLOSED SYSTEMS
TEKNIN MOTOR BAKAR INTERNAL
ANDI BUDIYANTO EMILIANA FAJAR FADILLAH FANESA MUHAMMAD WAHADA RENO SUSANTO RIRI ATRIA PRATIWI
Mechanical Energy & Efficiency
Chapter 3 PROPERTIES OF PURE SUBSTANCES
Transcript presentasi:

Thermodynamics of the Internal Combustion Engine AGUS HARYANTO

PERSAMAAN2 TERMODINAMIKA Hukum Boyle untuk gas ideal: P1V1 = P2V2 = PnVn = konstan Hukum Charles: Pada P konstan, V1/V2 = T1/T2 Pada V konstan, P1/P2 = T1/T2 Persamaan gas ideal P1V1/T1 = P2V2/T2 = … PV/T = R PV = RT PV = mRT

PERNYATAAN Kelvin-Plank (1850) For heat engines: It is impossible for any device that operates on a cycle to receive heat from a single reservoir and produce a net amount of work.

BOTTOM LINE Tidak ada mesin siklik yang memiliki efisiensi 100%

Panas spesifik, entropi, perubahan energi dakhil Q = mCp(T2 – T1) Entropi T dS = dQ Perubahan energi: Q = U2 – U1 + W

Diagram P-v dan T-s

Efisiensi Termal

cold-air-standard assumptions The working fluid is air, which circulates in a closed loop and behaves as an ideal gas. All the processes are internally reversible. The combustion process is replaced by a heat-addition from an external source The exhaust process is replaced by a heat-rejection and restores the fluid to initial state. Air has constant specific heats at room temperature 25°C.  cold-air-standard assumptions.

Siklus Motor Otto (bensin) Ideal The ideal Otto cycle consists of four internally reversible processes: 1-2 Isentropic compression 2-3 Constant-volume heat addition (Combustion) 3-4 Isentropic expansion (Langkah usaha) 4-1 Constant-volume heat rejection (langkah buang)

ENERGY BALANCE SIKLUS OTTO (qin – qout) + (win – wout) = u Qin = u3 – u2 = Cv(T3 – T2) Qout = u4 – u1 = Cv(T4 – T1)

ENERGY BALANCE SIKLUS OTTO Mean effective pressure (MEP): if it acted on the piston during the entire power stroke, would produce the same amount of net work as that produced during the actual cycle Wnet = MEP * Vol. displcm

ENERGY BALANCE SIKLUS OTTO r = compression ratio k = heat specific ratio = Cp/Cv

Note: Compression ratio yang tinggi akan berakibat pada suhu kompresi yang tinggi juga. Pada motor bensin, jika suhu ini mengakibatkan AUTOIGNITION dan menghasilkan noise yang disebut KNOCKING. Efisiensi termal motor bensin aktual 25 - 30 %.

ENERGY BALANCE SIKLUS DIESEL (qin – qout) + (wb) = u Qin = h3 – h2 = Cp(T3 – T2) Qout = u4 – u1 = Cv(T4 – T1)

ENERGY BALANCE SIKLUS DIESEL

Note: Eff. Thermal Motor bensin > diesel the same compression ratio Note: Eff. Thermal Motor bensin > diesel the same compression ratio. Efisiensi termal motor diesel aktual 35- 40 %.