Analisis Regresi dan Korelasi Linear

Slides:



Advertisements
Presentasi serupa
MODUL 8 KORELASI 1 PENGERTIAN KORELASI
Advertisements

ANALISIS REGRESI.
Analisis Korelasi dan Regresi Linier Sederhana
ANALISIS KORELASI DAN REGRESI LINEAR SEDERHANA
REGRESI LINEAR Oleh: Septi Ariadi
Analisis Korelasi dan Regresi Linier Sederhana
KORELASI DAN REGRESI LINEAR SEDERHANA
UJI KORELASI DAN REGRESI LINIER
KORELASI & REGRESI LINIER
BAB VI REGRESI SEDERHANA.
BAHAN AJAR M.K. PROGRAM LINEAR T.A. 2011/2012
REGRESI.
Regresi linier berganda dan regresi (trend) non linier
PERAMALAN /FORE CASTING
Regresi linier berganda dan Non linier Tugas Mandiri 01 J0682
BAB 9 KORELASI.
ANALISIS REGRESI DAN KORELASI
Regresi & Korelasi Linier Sederhana
ANALISIS KORELASI DAN REGRESI LINEAR SEDERHANA
ANALISA REGRESI & KORELASI SEDERHANA
REGRESI DAN KORELASI Pada bab ini akan membahas dua bagian yang saling berhubungan, khususnya dua kejadian yang dapat diukur secara matematis. Dalam hal.
REGRESI LINEAR.
ANALISIS REGRESI SEDERHANA
MODUL XIV REGRESI DAN KORELASI (2) 8. KORELASI LINEAR
TEKNIK ANALISIS KORELASIONAL
Analisis Regresi Sederhana
REGRESI DAN KORELASI.
Regresi dan Korelasi Linier
Denny Agustiawan JURUSAN TEKNIK INFORMATIKA STMIK ASIA MALANG
REGRESI LINEAR DALAM ANALISIS KUANTITATIF
STATISTIK II Pertemuan 14: Analisis Regresi dan Korelasi
Analisis Korelasi dan Regresi
ANALISIS REGRESI & KORELASI
Korelasi dan Regresi Aria Gusti.
Pertemuan ke 14.
SEJARAH REGRESI Istilah Regresi diperkenalkan oleh Fancis Galtom
Pertemuan ke 14.
PERAMALAN DENGAN GARIS REGRESI
REGRESI LINIER DAN KORELASI
BAB VIII REGRESI LINEAR BERGANDA DAN REGRESI (TREND) NON LINEAR
KORELASI DAN REGRESI LINEAR SEDERHANA
ANALISIS REGRESI SEDERHANA
NUR LAILATUL RAHMAH, S.Si., M.Si
Pengertian Regresi Analisis regresi merupakan studi ketergantungan satu atau lebih variabel bebas terhadap variabel tidak bebas. Dengan maksud untuk meramalkan.
ANALISIS KORELASI.
Analisis Regresi dan Korelasi
ANALISIS REGRESI SEDERHANA
LINDA ZULAENY HARYANTO
NITA ANGGI PUTRI nitaanggiputri.wordpress.com
KORELASI DAN REGRESI SEDERHANA
REGRESI LINEAR oleh: Asep, Iyos, Wati
REGRESI LINEAR.
STATISTIK II Pertemuan 12: Analisis Regresi dan Korelasi
REGRESI DAN KORELASI Contoh : Pengeluaran untuk konsumsi rumah tangga berkaitan dengan pendapatan rumah tangga. Data yang diperoleh sebagai berikut : Pendapatan.
LATIHAN SOAL REGRESI DAN KORELASI
LATIHAN SOAL REGRESI DAN KORELASI
LATIHAN SOAL REGRESI DAN KORELASI
REGRESI LINEAR.
Created by - Elmi Imiarti Purba - Linda Azzahra - Tamara Nathania
KORELASI & REGRESI LINIER
Korelasi dan Regresi Linier Sederhana & Berganda
REGRESI.
ANALISIS REGRESI SEDERHANA
REGRESI LINEAR.
ANALISIS REGRESI SEDERHANA
Analisis KORELASIONAL.
Korelasi dan Regresi Aria Gusti.
REGRESI DAN KORELASI JAKA WIJAYA KUSUMA M.Pd.
Korelasi dan Regresi Aria Gusti.
Teknik Regresi.
Transcript presentasi:

Analisis Regresi dan Korelasi Linear Kuliah 11

ILUSTRASI

Pengertian Regresi Analisis regresi merupakan studi ketergantungan satu atau lebih variabel bebas terhadap variabel tidak bebas. Dengan maksud untuk meramalkan nilai variabel tidak bebas.

Analisis Regresi Linear

Analisis Regresi Linear

Analisis Regresi Linear

Analisis Regresi Linear

Analisis Regresi Linear

Analisis Regresi Linear

Analisis Regresi Linear

Tugas: Suatu penelitian diadakan oleh seorang pedagang eceran untuk menentukan hubungan antara biaya promosi mingguan dengan penjualan. Datanya dalam ribuan rupiah tercatat sebagai berikut: Carilah persamaan garis regresi untuk memprediksi penjualan per minggu dari biaya promosi Taksir penjualan mingguan bila biaya promosi 35 ribu rupiah Penjualan (Y) 64 61 84 70 88 92 72 77 Promosi (X) 20 16 34 23 27 32 18 22

Kolerasi Linier Memandang permasalahan mengukur hubungan antara kedua peubah X dan Y. Dalam suatu kasus, bila X adalah umur suatu mobil bekas dan Y nilai jual mobil tersebut, maka kita membayangkan nilai-nilai X yang kecil berpadanan dengan nilai-nilai Y yang besar. Analisis kolerasi mencoba mengukur kekuatan hubungan antara dua peubah demikian melalui sebuah bilangan yang disebut koefisien kolerasi.

Koefisien korelasi (r) : kuat lemahnya hubungan antara dua variabel. Besar koefisien korelasi : 0 – (+1) : korelasi positif (direct correlation) 0 – (–1) : korelasi negatif (inverse correlation) r = 0  antara 2 variabel tidak ada korelasi r = +1  antara 2 variabel berkorelasi positif sempurna r = -1  antara 2 variabel berkorelasi negatif sempurna

Y (+) Y (-) X X

Biasanya nilai r tidak persis 0, +1 atau –1. r = 0,7 – 1 (plus/minus)  derajad hubungan : tinggi r = > 0,4 – < 0,7 (plus/minus)  derajad hubungan : sedang r = > 0,2 – < 0,4 (plus/minus)  derajad hubungan : rendah r = < 0,2 (plus/minus)  dapat diabaikan

Tabel 1. Hasil panen Ikan bandeng dengan pemupukan menggunakan urea Pupuk (kg/ha): X Berat bandeng (kg/ha): Y 50 100 150 4.230 5.442 6.661 7.150 Jumlah 300 23.483 Rata-rata 75 5.870,75

Tabel 1. Hasil panen Ikan bandeng dengan pemupukan menggunakan urea Pupuk (kg/ha): X Berat bandeng (kg/ha): Y XY X2 Y2 50 100 150 4.230 5.442 6.661 7.150 272.100 666.100 1.072.500 2.500 10.000 22.500 17.892.900 29.615.364 44.368.921 51.122.500 Jumlah 300 23.483 2.010.700 35.000 142.999.685 Rata-rata 75 5.870,75

Tabel 1. Hasil panen Ikan bandeng dengan pemupukan menggunakan urea Pupuk (kg/ha): X Berat bandeng (kg/ha): Y XY X2 Y2 50 100 150 4.230 5.442 6.661 7.150 272.100 666.100 1.072.500 2.500 10.000 22.500 17.892.900 29.615.364 44.368.921 51.122.500 Jumlah 300 23.483 2.010.700 35.000 142.999.685 Rata-rata 75 5.870,75

Tabel 1. Hasil panen Ikan bandeng dengan pemupukan menggunakan urea Pupuk (kg/ha): X Berat bandeng (kg/ha): Y XY X2 Y2 50 100 150 4.230 5.442 6.661 7.150 272.100 666.100 1.072.500 2.500 10.000 22.500 17.892.900 29.615.364 44.368.921 51.122.500 Jumlah 300 23.483 2.010.700 35.000 142.999.685 Rata-rata 75 5.870,75

Penyelesaian :

 Ada hubungan yang kuat antara tingkat pemupukan dengan hasil panen ikan bandeng  Semakin tinggi tingkat pemupukan, semakin banyak pula hasil panennya