MATA KULIAH METODE NUMERIK NOVRI FATMOHERI 1310017411026 Dosen Pembimbing DR.Mulyazmi, S.T
Persamaan Non Linier penentuan akar-akar persamaan non linier. Akar sebuah persamaan f(x) =0 adalah nilai-nilai x yang menyebabkan nilai f(x) sama dengan nol. akar persamaan f(x) adalah titik potong antara kurva f(x) dan sumbu X.
Titik potong antara kurva f(x) dan sumbu X.
Perbandingan Persamaan Penyelesaian persamaan linier mx + c = 0 dimana m dan c adalah konstanta, dapat dihitung dengan : mx + c = 0 x = - Penyelesaian persamaan kuadrat ax2 + bx + c = 0 dapat dihitung dengan menggunakan rumus ABC.
Penyelesaian Persamaan Non Linier Metode Tertutup Mencari akar pada range [a,b] tertentu Dalam range[a,b] dipastikan terdapat satu akar Hasil selalu konvergen disebut juga metode konvergen Metode Terbuka Diperlukan tebakan awal xn dipakai untuk menghitung xn+1 Hasil dapat konvergen atau divergen Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant.
Metode Biseksi Ide awal metode ini adalah metode table, dimana area dibagi menjadi N bagian. Hanya saja metode biseksi ini membagi range menjadi 2 bagian, dari dua bagian ini dipilih bagian mana yang mengandung dan bagian yang tidak mengandung akar dibuang.Hal ini dilakukan berulang-ulang hingga diperoleh akar persamaan.
Metode Biseksi
Theorema Suatu range x=[a,b] mempunyai akar bila f(a) dan f(b) berlawanan tanda atau memenuhi f(a).f(b)<0 Theorema di atas dapat dijelaskan dengan grafik-grafik sebagai berikut: Karena f(a).f(b)<0 maka pada range x=[a,b] terdapat akar. Karena f(a).f(b)>0 maka pada range x=[a,b] tidak dapat dikatakan terdapat akar.
METODE BISEKSI
Kelebihan Metode Biseksi Metode Biseksi Hal-hal yang perlu diperhatikan dalam metode biseksi 1. Fungsi harus kontinu pada interval xn dan xn+1. 2. Menentukan xn dan xn+1 dapat diperoleh dengan membuat grafik fungsinya. 3. Nilai toleransi (error) dapat ditentukan oleh pengguna ataupun didasarkan pada bidang ilmu dari permasalahan yang diselesaikan. Kelebihan Metode Biseksi Selalu berhasil menemukan akar (solusi) yang dicari, atau dengan kata lain selalu konvergen.
Kekurangan Metode Biseksi Metode biseksi hanya dapat dilakukan apabila ada akar persamaan pada interval yang diberikan. Jika ada beberapa akar pada interval yang diberikan maka hanya satu akar saja yang dapat ditemukan. Memiliki proses iterasi yang banyak sehingga memperlama proses penyelesaian. Tidak memandang bahwa sebenarnya akar atau solusi yang dicari dekat sekali dengan batas interval yang digunakan.
Contoh: Tentukan solusi dari persamaan non-linier: y = x3 – 7x + 1 dengan error 0.005. Penyelesaian: - Dengan Metode Biseksi Langkah 1 : Membuat grafik dari y = x3 – 7x + 1 untuk memperoleh batas interval xn dan xn+1. Dengan program Maple diperoleh grafik y = x3 – 7x + 1 sebagai berikut: Terlihat dari grafik di atas bahwa solusi dari y = x3 – 7x + 1 ada pada interval 2.5 dan 2.6, maka digunakan xn = 2.5 dan xn+1 = 2.6.
Grafik nilai x terhadap f(X) 𝐹( 𝑋 𝑛 ) 𝐹( 𝑋 𝑛+1 ) Grafik nilai x terhadap f(X)
Langkah 3 : Apakah f (xn) dan f (xmid) sama tanda Langkah 3 : Apakah f (xn) dan f (xmid) sama tanda? Jika sama tanda maka xmid menggantikan xn, sedangkan jika berbeda tanda maka xmid menggantikan xn+1. Terlihat dari tabel 1, f (xn) = -0.875 dan f (xmid) = -0.269 sama tanda, maka xmid = 2.55 menggantikan xn = 2.5.
Langkah 4 : Apakah | f (xmid)| ≤ 0. 005. Jika ya, maka xmid = 2 Langkah 4 : Apakah | f (xmid)| ≤ 0.005? Jika ya, maka xmid = 2.55 merupakan solusi dari persamaan non linier tersebut, jika tidak, ulangi langkah 2 dengan xn = 2.55 dan xn+1 = 2.6. Dikarenakan | f (xmid)| = 0.269 > 0.005 maka ulangi langkah 2 sehingga diperoleh hasil sebagai berikut: Langkah 4 : Apakah | f (xmid)| ≤ 0.005? Jika ya, maka xmid = 2.55 merupakan solusi dari persamaan non linier tersebut, jika tidak, ulangi langkah 2 dengan xn = 2.55 dan xn+1 = 2.6. Dikarenakan | f (xmid)| = 0.269 > 0.005 maka ulangi langkah 2 sehingga diperoleh hasil sebagai berikut: KLIK TO ME
METODE REGULASI FALSI metode pencarian akar persamaan dengan memanfaatkan kemiringan dan selisih tinggi dari dua titik batas range. Dua titik a dan b pada fungsi f(x) digunakan untuk mengestimasi posisi c dari akar interpolasi linier. Dikenal dengan metode False Position
METODE REGULASI FALSI
METODE REGULASI FALSI Xmid = Metode regulasi falsi memiliki kesamaan dengan Metode Biseksi Namun terdapat perbedaan rumus Xmid yang memenuhi persamaan Metode Biseksi Metode Regulasi Falsi Xmid =
METODE REGULASI FALSI
Contoh: Tentukan solusi dari persamaan non-linier: y = x3 – 7x + 1 dengan error 0.005. Penyelesaian: - Dengan Metode Regulasi Falsi Langkah 1 : Membuat grafik dari y = x3 – 7x + 1 untuk memperoleh batas interval xn dan xn+1. Dengan program Maple diperoleh grafik y = x3 – 7x + 1 sebagai berikut: Terlihat dari grafik di atas bahwa solusi dari y = x3 – 7x + 1 ada pada interval 2.5 dan 2.6, maka digunakan xn = 2.5 dan xn+1 = 2.6.
Langkah 3 : Apakah f (xn) dan f (x. ) sama tanda Langkah 3 : Apakah f (xn) dan f (x*) sama tanda? Jika sama tanda maka x* menggantikan xn, sedangkan jika berbeda tanda maka x* menggantikan xn+1. Terlihat dari tabel 1, f (xn) = -0.875 dan f (x*) = -0.015 sama tanda, maka x* = 2.57 menggantikan xn = 2.5.
Langkah 4 : Apakah | f (x*)| ≤ 0.005? Jika ya, maka x* = 2.57 merupakan solusi dari persamaan non linier tersebut, jika tidak, ulangi langkah 2 dengan xn = 2.57 dan xn+1 = 2.6. Dikarenakan | f (xmid)| = 0.015 > 0.005 maka ulangi langkah 2 sehingga diperoleh hasil sebagai berikut:
Metode Newton-Raphson metode pendekatan yang menggunakan satu titik awal dan mendekatinya dengan memperhatikan slope atau gradien pada titik tersebut.Titik pendekatan ke n+1 dituliskan dengan : Xn+1 = xn - 𝑓(𝑥 𝑛 ) 𝑓′(𝑥 𝑛 )
Metode Newton-Raphson
Algoritma Newton-Raphson
Kelebihan: Kelemahan: Konvergensi yang dihasilkan lebih cepat. Tidak selalu menemukan akar (divergen). Kemungkinan sulit dalam mencari f’(xn). Penetapan harga awal (xn) yang sulit.
Langkah 1 : Menentukan nilai awal, xn. Contoh: Tentukan solusi dari persamaan non-linier: y = x3 – 7x + 1 dengan error 0.03. Penyelesaian : Langkah 1 : Menentukan nilai awal, xn. Misalkan dipilih xn = 2.5.
Langkah 3 : Apakah | f (xn+1)| ≤ 0.03? Jika ya, maka xn+1 = 2.574 merupakan solusi dari persamaan non linier tersebut, jika tidak, ulangi langkah 2 dengan xn = 2.574. Dikarenakan | f (xn+1)| = 0.04 > 0.03 maka ulangi langkah 2 sehingga diperoleh hasil sebagai berikut:
Metode Secant Disebut juga Metode Interpolasi Linear Dalam prosesnya tidak dilakukan penjepitan akar [x0, x1] tidak harus mengandung akar yang akan dicari, sehingga f(x0) dan f(x1) bisa bertanda sama. Mencari x2 , yaitu Untuk iterasi berikutnya akan diperoleh interval baru [x0, x1] dengan cara pergeseran: x0 x1 , x1 x2 Iterasi berlangsung sampai batas maksimum atau sampai dipenuhinya batas Toleransi (T).
Langkah 1: Menentukan x1 dan x0. Contoh: Tentukan solusi dari persamaan non-linier: y = x3 – 7x + 1 dengan error 0.03. Penyelesaian: Langkah 1: Menentukan x1 dan x0. Misalkan dipilih x1 = 2,5 dan x0 =2.3
Langkah 3 : Apakah | f (x2)| ≤ 0.03? Jika ya, maka x2 = 2.585 merupakan solusi dari persamaan non linier tersebut, jika tidak, ulangi langkah 2 dengan x1 menjadi x0 dan x2 menjadi x1. Dikarenakan | f (x2)| = 0.18 > 0.03 maka ulangi langkah 2 sehingga diperoleh hasil sebagai berikut: | f (x2)| = 0.015 ≤ 0.03 maka iterasi dihentikan dan diperoleh solusi persamaan non linier yang diinginkan yaitu x = 2.57.