Tri Rahajoeningroem, MT T Elektro UNIKOM

Slides:



Advertisements
Presentasi serupa
Analisis Rangkaian Listrik
Advertisements

Frequency Domain.
Convolution and Correlation
PENGOLAHAN CITRA DIGITAL : TRANSFORMASI CITRA (2)
Pengolahan Citra Digital: Transformasi Citra (Bagian 2 : Wavelet)
Pengolahan Citra (TIF05)
Perbaikan Citra pada Domain Spasial
Transformasi Geometri 2 Dimensi
Pengolahan Citra Digital: Transformasi Citra (Bagian 1 : FT – DCT)
Teori Konvolusi dan Fourier Transform
Perspective & Imaging Transformation
PENGOLAHAN CITRA DAN POLA
KONVOLUSI DAN TRANSFORMASI FOURIER
Pendahuluan Mengapa perlu transformasi ?
Analisis Rangkaian Listrik
CS3204 Pengolahan Citra - UAS
Pengolahan Citra Digital Peningkatan Mutu Citra Pada Domain Frekuensi
Konvolusi Dan Transformasi Fourier
Convolution and Correlation
Pengolahan Citra Digital: Transformasi Citra (Bagian 1 : FT – DCT)
Pengolahan Citra Digital: Transformasi Citra (Bagian 2 : Wavelet)
Pengolahan Citra Digital Peningkatan Mutu Citra Pada Domain Frekuensi
Convolution and Correlation Dr. Ir. Sumijan, M.Sc Dosen Universitas Putra Indonesia “YPTK”
2.2 Operasi Dasar Citra : Lokal dan Objek Operasi Ketetanggaan Pixel
TRANSFORMASI 2D.
Materi 04 Pengolahan Citra Digital
KONVOLUSI Oleh : Edy Mulyanto.
Transformasi Geometri Sederhana
Pertemuan 9 : SISTEM 2D & REVIEW MATRIKS
Perbaikan Kualitas Citra (Image Enhancement)
MODUL 5 Domain Frekuensi dan Filtering Domain Frekuensi
Mengapa Kita Butuh FFT ? 2013.
BAB V Transformasi Citra
IKG3C3/ TEKNIK PENGKODEAN
Analisis Fourier Jean Baptiste Fourier ( , ahli fisika Perancis) membuktikan bahwa sembarang fungsi periodik (kecuali sinus murni) pada dasarnya.
Fourier transforms and frequency-domain processing
PENGOLAHAN CITRA DIGITAL : TRANSFORMASI CITRA (1)
Konvolusi Anna Dara Andriana.
Pengolahan dalam Domain Frekuensi dan Restorasi Citra
KONVOLUSI Tri Rahajoeningroem, MT T. Elektro - UNIKOM
Transformasi Z Transformasi Z dalam pengolahan sinyal digital mempunyai aturan yang sama dengan Transformasi Laplace pada rangkaian dan sistem analog.
KONVOLUSI ROSNY GONYDJAJA.
Penapisan pada Domain Frekuensi 1
Tri Rahajoeningroem, MT T. Elektro - UNIKOM
KONVOLUSI 6/9/2018.
Pengolahan Citra Digital: Transformasi Citra (Bagian 2 : Wavelet)
Digital Image Processing
Mengapa Kita Butuh FFT ? 2014.
Pengolahan Citra Digital Peningkatan Mutu Citra Pada Domain Frekuensi
KONVOLUSI DAN TRANSFORMASI FOURIER
Pengolahan Citra Digital Peningkatan Mutu/Kualitas Citra
Transformasi 2 Dimensi.
CS3204 Pengolahan Citra - UAS
Convolution and Correlation
MATEMATIKA DASAR PERTEMUAN 9 FUNGSI.
Kekurangan Tr. Fourier Tranformasi wavelet (WT) merupakan perbaikan dari transformasi Fourier(FT). FT : hanya dapat menangkap informasi apakah suatu sinyal.
TRANSFORMASI Z KELOMPOK 3 Disusun untuk memenuhi Tugas ke-3 Matematika Teknik Lanjut.
Pengolahan Citra Pertemuan 8
HARAPAN MATEMATIKA Tri Rahajoeningroem, MT Jurusan Teknik Elektro
Transformasi Geometri 2 Dimensi
ALIHRAGAM (TRANSFORMASI) FOURIER
IMAGE ENHANCEMENT.
I. Fourier Spectra Citra Input Peningkatan mutu citra pada domain frekuensi Fourier dilakukan secara straightforward: Hitung transformasi Fourier dari.
PENGOLAHAN CITRA DIGITAL : TRANSFORMASI CITRA (2)
Transformasi Geometri 2 Dimensi
KONVOLUSI 11/28/2018.
DERET FOURIER:.
Pengantar Pengolahan Citra 4IA10 Kelompok 4 : Faisal Ghifari ( ) Raihan Firas M ( ) Hafidz Amrulloh ( )
MATEMATIKA TEKNIK II DERET FOURIER Sapriesty Nainy Sari, ST., MT. Jurusan Teknik Elektro Universitas Brawijaya 3 SKS.
Deret Fourier dan Transformasi Fourier
Transcript presentasi:

Tri Rahajoeningroem, MT T Elektro UNIKOM Transformasi Fourier Tri Rahajoeningroem, MT T Elektro UNIKOM

Teori Konvolusi Konvolusi dua buah fungsi f(x) dan g(x) didefinisikan sebagai berikut : Integral dari – tak hingga sampai tak terhingga Untuk fungsi diskrit , konvolusi didefinisikan sebagai g(x) disebut dengan kernel konvolusi (filter) , kernel g(x) merupakan jendela yang dioperasikan secara bergeser pada sinyal masukan f(x) hasil konvolusi dinyatakan dengan keluaran h(x) Perhitungan hasil konvolusi diperlihatkan pada gambar a – f, dan hasil konvolusi ditunjukkan pada gambar g x/2 , 0 <= x <= 1 f(x) * g(x) = X – x/2, 1<= x <= 2 0, Lainnya

Ilustrasi proses konvolusi

d(x) 1 x Contoh ilustrasi konvolusi lain adalah impulse f(x)*g(x) x 1/2 x 1 2 (g) Contoh ilustrasi konvolusi lain adalah impulse Fungsi Impulse Fungsi Delta Dirac pada domain kontinue dan Fungsi Delta Kronecker pada domain diskrit d(x) yang mempunyai nilai 1 pada suatu x dan mempunyai nilai 0 pada x lainnya. d(x) 1 x

Impulse Response Impulse Response Sistem yang ideal Menurut teori filtering, pada sistem yang ideal, sinyal yang masuk (impulse) sama dengan sinyal yang keluar (impulse response). Hal tersebut dapat digambarkan dengan transfer function dalam bentuk fungsi Delta Dirac. Sistem yang ideal proses konvolusi f(x) d(x) f(x)*d(x)

POINT SPREAD FUNCTION (PSF) (FUNGSI SEBARAN TITIK) Sistem yang tidak ideal Pada sistem yang tidak ideal, sinyal yang masuk mengalami degradasi atau penurunan kwalitas. Blurring proses konvolusi f(x) g(x) f(x)*g(x) an impulse is a point of light g(x) blurs the point (optical phenomenon yang disebut point spread function - PSF) g(x) juga disebut sebagai impulse response function

Konvolusi pada fungsi Dwimatra Fungsi malar Fungsi diskrit Fungsi penapis g(x,y) disebut juga convolution filter, convolution mask, convolution kernel atau template. Dalam bentuk diskret kernel konvolusi dinyatakan dalam bentuk matriks, misal 2x2, 3x3, 2x1 atau 1x2

Ilustrasi konvolusi F(i,j)=Ap1+Bp2+Cp3+Dp4+Ep5+Fp6+Gp7+Hp8+Ip9 Contoh: misal citra f(x,y) yang berukuran 5x5 dan sebuah kernel dengan ukuran 3x3, matriks sebagai berikut : 4 4 3 5 4 0 -1 0 6 6 5 5 2 g(x,y)= -1 4 -1 F(x,y)= 5 6 6 6 2 0 -1 0 6 7 5 5 3 3 5 2 4 4 Operasi konvolusi antara citra f(x,y) dengan kernel g(x,y), F(x,y)*g(x,y)

Menghitung hasil konvolusi Menempatkan kernel pada sudut kiri atas , kemudian hitung nilai pixel pada posisi (0,0) dari kernel : hasil = 3 Geser kernel satu pixel ke kanan ,kemudian hitung nilai pixel pada posisi (0,0) dari kernel: hasil = 0 Selanjutnya dengan cara yang sama geser ke kanan, dst Geser kernel satu pixel ke bawah, lakukan perhitungan seperti diatas Nilai pixel citra tepi tidak berubah 4 4 3 5 4 6 3 0 2 2 5 0 2 6 2 = hasil konvolusi 6 6 0 2 3 3 5 2 4 4

Transformasi Fourier Mengapa perlu transformasi ? Setiap orang pada suatu saat pernah menggunakan suatu teknik analisis dengan transformasi untuk menyederhanakan penyelesaian suatu masalah [Brigham,1974] Contoh: penyelesaian fungsi y = x/z Analisa konvensional : pembagian secara manual Analisa transformasi : melakukan transformasi log(y) = log(x) – log(z) look-up table  pengurangan  look-up table

Transformasi juga diperlukan bila kita ingin mengetahui suatu informasi tertentu yang tidak tersedia sebelumnya Contoh : jika ingin mengetahui informasi frekuensi kita memerlukan transformasi Fourier Jika ingin mengetahui informasi tentang kombinasi skala dan frekuensi kita memerlukan transformasi wavelet Transformasi Citra Transformasi citra, sesuai namanya, merupakan proses perubahan bentuk citra untuk mendapatkan suatu informasi tertentu Transformasi bisa dibagi menjadi 2 : Transformasi piksel/transformasi geometris: Transformasi ruang/domain/space

Transformasi Pixel Transformasi Ruang Transformasi piksel masih bermain di ruang/domain yang sama (domain spasial), hanya posisi piksel yang kadang diubah Contoh: rotasi, translasi, scaling, invers, shear, dll. Transformasi jenis ini relatif mudah diimplementasikan dan banyak aplikasi yang dapat melakukannya (Paint, ACDSee, dll) Transformasi Ruang Transformasi ruang merupakan proses perubahan citra dari suatu ruang/domain ke ruang/domain lainnya, contoh: dari ruang spasial ke ruang frekuensi Masih ingat istilah ‘ruang’ ? Ingat-ingat kembali pelajaran Aljabar Linier tentang Basis dan Ruang  Contoh : Ruang vektor. Salah satu basis yang merentang ruang vektor 2 dimensi adalah [1 0] dan [0 1]. Artinya, semua vektor yang mungkin ada di ruang vektor 2 dimensi selalu dapat direpresentasikan sebagai kombinasi linier dari basis tersebut.

Ada beberapa transformasi ruang yang akan kita pelajari, yaitu : Transformasi Fourier (basis: cos-sin) Transformasi Hadamard/Walsh (basis: kolom dan baris yang ortogonal) Transformasi DCT (basis: cos) Transformasi Wavelet (basis: scaling function dan mother wavelet) Transformasi Fourier Pada tahun 1822, Joseph Fourier, ahli matematika dari Prancis menemukan bahwa: setiap fungsi periodik (sinyal) dapat dibentuk dari penjumlahan gelombang-gelombang sinus/cosinus. Contoh : Sinyal kotal merupakan penjumlahan dari fungsi-fungsi sinus berikut (lihat gambar pada halaman berikut) f(x) = sin(x) + sin(3x)/3 + sin(5x)/5 + sin(7x)/7 + sin(9x)/9 …

Hasil dalam transformasi fourier Fungsi kotak sebagai penjumlahan fungsi-fungsi sinus Cobakan juga program matlab berikut untuk melihat sampai batas n berapa fungsi yang dihasilkan sudah berbentuk fungsi kotak. function kotak(n) t = 0:pi/200:8*pi; kot = sin(t); for i = 3 : 2: n kot = kot + (sin(i*t))/i; end plot(kot)

Gambar a) n = 1, b) n =3, c) n = 7, d) n = 99

FT - Motivasi Jika semua sinyal periodik dapat dinyatakan dalam penjumlahan fungsi-fungsi sinus-cosinus, pertanyaan berikutnya yang muncul adalah: Jika saya memiliki sebuah sinyal sembarang, bagaimana saya tahu fungsi-fungsi cos – sin apa yang membentuknya ? Atau dengan kata lain Berapakah frekuensi yang dominan di sinyal tersebut ? Pertanyaan di atas dapat dijawab dengan menghitung nilai F(u) dari sinyal tersebut. Dari nilai F(u) kemudian dapat diperoleh kembali sinyal awal dengan menghitung f(x), menggunakan rumus:

Rumus FT – 1 dimensi Rumus FT kontinu 1 dimensi Rumus FT diskret 1 dimensi Contoh berikut diambil dari Polikar (http://engineering.rowan.edu/~polikar/WAVELETS/WTtutorial.html) Misalkan kita memiliki sinyal x(t) dengan rumus sbb: x(t) = cos(2*pi*5*t) + cos(2*pi*10*t) + cos(2*pi*20*t) + cos(2*pi*50*t) Sinyal ini memiliki empat komponen frekuensi yaitu 5,10,20,50

Contoh FT 1 dimensi Contoh berikut diambil dari Polikar (http://engineering.rowan.edu/~polikar/WAVELETS/WTtutorial.html) Misalkan kita memiliki sinyal x(t) dengan rumus sbb: x(t) = cos(2*pi*5*t) + cos(2*pi*10*t) + cos(2*pi*20*t) + cos(2*pi*50*t) Sinyal ini memiliki empat komponen frekuensi yaitu 5,10,20,50

Contoh sinyal 1 Dimensi x(t) Gambar sinyal satu dimensi dengan rumus x(t)= cos(2*pi*5*t) + cos(2*pi*10*t) + cos(2*pi*20*t) + cos(2*pi*50*t) (Sumber: Polikar)

FT dari sinyal tersebut Terlihat bahwa FT dapat menangkap frekuensi-frekuensi yang dominan dalam sinyal tersebut, yaitu 5,10, 20, 50 (nilai maksimum F(u) berada pada angka 5,10, 20, 50)

Contoh Penghitungan FT 1 dimensi (Gonzalez hlm 90-92)

Contoh Penghitungan FT Hasil penghitungan FT biasanya mengandung bilangan real dan imajiner Fourier Spectrum didapatkan dari magnitude kedua bilangan tersebut shg|F(u)| = [R 2(u) + I 2(u)]1/2 Untuk contoh di halaman sebelumnya, Fourier Spectrumnya adalah sebagai berikut: |F(0)| = 3.25 |F(1)| = [(-0.5)2+(0.25)2]1/2 = 0.5590 |F(2)| = 0.25 |F(3)| = [(0.5)2+(0.25)2]1/2 = 0.5590

Rumus FT – 2 dimensi Rumus FT 2 dimensi

Contoh FT 2 Dimensi Sumber: http://www. icaen. uiowa Untuk menampilkan nilai FT suatu citra, karena keterbatasan display, seringkali digunakan nilai D(u,v)= c log [1 + |F(u,v)|]