Hp Banjarbaru - Kalimantan Selatan Pertemuan 5 Mata Kuliah : EPIDEMIOLOGI GIZI Level of significant, Confidence interval
Level of significant) Tingkat Signifikansi (Level of significant) Dalam bahasan statistika istilah tingkat signifikansi (significance level) dan tingkat kepercayaan (confidence level) dan sering digunakan. Tingkat signifikansi (α) menunjukkan probabilitas atau peluang kesalahan yang ditetapkan peneliti dalam mengambil keputusan untuk menolak atau mendukung hipotesis nol, atau dapat diartikan juga sebagai tingkat kesalahan atau tingkat kekeliruan yang ditolerir oleh peneliti, yang diakibatkan oleh kemungkinan adanya kesalahan dalam pengambilan sampel (sampling error). Tingkat signifikansi dinyatakan dalam persen dan dilambngkan dengan α. Misalnya, ditetapkan tingkat signifikansi α = 5% atau α = 10%. Artinya, keputusan peneliti untuk menolak atau mendukung hipotesis nol memiliki probabilitas kesalahan sebesar 5% atau 10%. Dalam beberapa program statistik berbasis komputer, tingkat signifikansi selalu disertakan dan ditulis sebagai Sig. (= significance), atau dalam program komputer lainnya ditulis ρ-value. Nilai Sig atau ρ – value, seperti telah diuraikan di atas, adalah nilai probabilitas kesalahan yang dihitung atau menunjukkan tingkat probabilitas kesalahan yang sebenarnya. Tingkat kesalahan ini digunakan sebagai dasar untuk mengambil keputusan dalam pengujian hipotesis
Confidence interval) Tingkat kepercayaan ( Confidence interval) pada dasarnya menunjukkan tingkat keterpercayaan sejauh mana statistik sampel dapat mengestimasi dengan benar parameter populasi dan/atau sejauh mana pengambilan keputusan mengenai hasil uji hipotesis nol diyakini kebenarannya. Dalam statistika, tingkat kepercayaan nilainya berkisar antara 0 sampai 100% dan dilambangkan oleh 1 – α. Secara konvensional, para peneliti dalam ilmu-ilmu sosial sering menetapkan tingkat kepercayaan berkisar antara 95% – 99%. Jika dikatakan tingkat kepercayaan yang digunakan adalah 95%, ini berarti tingkat kepastian statistik sampel mengestimasi dengan benar parameter populasi adalah 95%, atau tingkat keyakinan untuk menolak atau mendukung hipotesis nol dengan benar adalah 95%.
Sebagai contoh: kita mengukur mean (rata-rata) tinggi badan siswa SMU sekolah X, sample yang kita ambil sebanyak 100 siswa. Agar hasilnya valid dan reliable (baca: validitas, reliabilitas, validitas dan reliabilitas) kita lakukan perhitungan tersebut berulang-ulang, katakanlah 50 kali pengambilan sample, dengan sample 100 siswa yang berbeda-beda. Setelah kita hitung meantinggi badan siswa, maka hasilnya akan bermacam- macam, misalnya 164.5; 165 cm; cm; 163 cm; 166 cm; 165,25 cm, dan seterusnya hingga kita memperoleh 50 mean. Dari contoh ini kita akan kesulitan mengukur keakuratannya apabila menggunakan hanya menggunakan satu mean saja, meskipun mungkin salah satu dari 50 mean tersebut merupakan mean tinggi badan siswa SMU yang sebenarnya. Untuk itu dibutuhkanconfidence interval, dengan menggunakan confidence intervaldari mean, kita dapat mengetahui keakuratan penduga sampel tersebut dalam menduga parameter populasi.
Salah satu untuk melihat keakuratan interval pendugaan kita adalah dengan melihat confidence levelnya. Seperti yang disebutkan di atas bahwa keakuratan dapat dilihat dari confidence levelnya, semakin tinggi confidence level yang kita gunakan maka semakin akurat pendugaan yang dilakukan artinya apabila peneliti menggunakan 100 % confidence level berarti seluruh nilai statistic (penduga) dalam pengambilan sample berada dalam nilai penduga parameter populasi atau statistic (penduga) yang diduga dari sample merupakan statistic pula bagi parameter populasi. Hal ini menunjukkan bahwa kita tidak mentolerir kesalahan dalam pendugaan populasi. Namun karena pertimbangan ekonomis, waktu, tenaga, dan teknis yang sulit dilakukan maka 100 % confidence level jarang bahkan tidak pernah digunakan. Confidence interval menggunakan persentase, maka yang digunakan antara 1 – 100 %. Confidence interval sering menggunakan confidence level (tingkat kepercayaan) 95% tapi dapat juga menggunakan 90%, 99% dan 99,9 % atau berapapunconfidence level untuk populasi yang tidak diketahui.
PERBEDAAN REGRESI & KORELASI REGRESIKORELASI Regresi mempelajari bentuk hubungan antar variabel melalui suatu persamaan. Persamaan yang digunakan untuk melihat hubungan antar variabel adalah Regresi Linear Sederhana (RLS), Regresi Linear Berganda (RLB), dan Regresi non Linear. Korelasi juga mempelajari hubungan antar variabel, tetapi digunakan untuk melihat seberapa erat hubungan antar dua variabel kuantitatif dilihat dari besarnya angka dan bukan dari tandanya. Regresi bisa berupa hubungan sebab akibat. Regresi mengukur seberapa besar suatu variabel mempengaruhi variabel yang lain, sehingga dapat digunakan untuk melakukan peramalan nilai suatu variabel berdasarkan variabel lainya Dengan menggunakan korelasi, kita dapat mengetahui arah hubungan yang terjadi dalam dua variabel. Jika korelasi bertanda positif artinya berbanding lurus dan jika bertanda negatif maka berbanding terbalik.
“Korelasi tidak bisa menyatakan hubungan sebab akibat meskipun angka korelasinya tinggi” Misal ada dua pernyataan: Tanaman mati kekeringan di musim kemarau pupuk kompos diberikan saat musim kemarau Dari kedua pernyataan di atas, kita tidak dapat mengatakan bahwa pupuk kompos menyebabkan tanaman mati meskipun korelasinya tinggi.
Mohon maaf jika ada kata atau perbuatan yang kurang berkenan