Statistic Process Control Week 3 Ananda Sabil Hussein, SE, MCom.

Slides:



Advertisements
Presentasi serupa
METODE STATISTIKA Pertemuan III DISTRIBUSI SAMPLING.
Advertisements

Peta Kontrol (Untuk Data Variabel)
Peta Kendali ATRIBUT.
7 Sebaran Penarikan Contoh/Sampel dan Penduga Titik Bagi Parameter.
PS. SUPERVISOR JAMINAN MUTU PANGAN
Peta Kendali Variabel.
GRAFIK KENDALI (CONTROL CHARTS)
RENCANA PENARIKAN SAMPEL PENERIMAAN (ACCEPTANCE SAMPLING PLAN)
Pendugaan Parameter.
Statistic Process Control
Analysis and Presentation of Data
PROCESS CAPABILITY ANALYSIS
OLEH IR. INDRAWANI SINOEM, MS
MPS 2 Kamis, 14 Oktober  Univariat Analysis: the examination of the distribution of cases on only one variable at a time.  Distribusi frekuensi:
OLEH IR. INDRAWANI SINOEM, MS
Control Chart (Peta Kendali)
© 2002 Prentice-Hall, Inc.Chap 3-1 Bab 3 Pengukuran.
Peta Kendali ATRIBUT World Class.
Varable Control Chart Individual, Cumulative Sum, Moving-Average, Geometric Moving-Average, Trend, Modified, Acceptance.
VARIABLES CONTROL CHARTS
Directorate General of Higher Education Ministry of National Education
Control Chart Selection Quality Characteristic variable attribute defective defect no n>1? x and MR constant sampling unit? yes constant sample size?
1 Pertemuan 03 dan 04 Ukuran Variasi Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Appropriate Measures of Central Tendency Nominal variables Mode Ordinal variables Median Interval level variables Mean - If the distribution is normal.
Population and sample. Population is complete actual/theoretical collection of numerical values (scores) that are of interest to the researcher. Simbol.
Pertemuan 03 Ukuran Penyimpangan (Variasi)
PENDUGAAN PARAMETER Pertemuan 7
Review Statistik (pertemuan 7). Konsep Tendensi Pusat Ukuran tendensi pusat adalah sembarang ukuran yang menunjukkan pusat segugus data, yang telah.
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
BAB 20 PENGENDALIAN MUTU STATISTIK
Peta Kontrol Untuk Data Atribut
1 Pertemuan #3 Probability Distribution Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
Ukuran Penyimpangan atau Disversi Pertemuan 04
MODUL 9. PENGANTAR TEKNIK INDUSTRI
PROBABILITY DISTRIBUTION
DISTRIBUSI BINOMIAL.
STATISTIKA CHATPER 4 (Perhitungan Dispersi (Sebaran))
Statistik TP A Pengujian Hipotesis Satu Populasi (Mean dan Proporsi)
TEKNIK DESKRIPTIF I MENAMPILKAN DATA DALAM GRAFIK
MANAJEMEN OPERASIONAL 2
PENGENDALIAN KUALITAS - pertemuan 05 -
GRAFIK KENDALI (CONTROL CHARTS)
PENGENDALIAN KUALITAS
pengendalian kualitas dalam proses.
BIOSTATISTIK DESKRIPTIF
UKURAN NILAI SENTRAL&UKURAN PENYEBARAN
UKURAN DISPERSI Dr. Srikandi Kumadji, MS.
STATISTIKA DALAM KIMIA ANALITIK
ANALISIS PENGAWASAN KUALITAS PRODUKSI SWEATER PADA PT
Teori Sampling dan Distribusi Sampling
Pengujian Hipotesis (I) Pertemuan 11
UKURAN-UKURAN STATISTIK
UKURAN NILAI SENTRAL&UKURAN PENYEBARAN
DISTRIBUSI BINOMIAL.
BAB 20 PENGENDALIAN MUTU STATISTIK
Pendugaan Parameter (I) Pertemuan 9
ALAT-ALAT PENGENDALIAN KUALITAS (2)
UKURAN NILAI SENTRAL&UKURAN PENYEBARAN
PENGENDALIAN KUALITAS
ANALISA STATISTICAL QUALITY CONTROL DALAM PENENTUAN PENGAWASAN KUALITAS PRODUK ROKOK PADA PT. GANDUM)
Distribusi Sampling.
VARIABLES CONTROL CHARTS
OLEH : RESPATI WULANDARI, M.KES
Peta X dan R Peta kendal X :
VARIABEL ACAK (RANDOM VARIABLES)
Control Chart Transparency Masters to accompany Heizer/Render – Principles of Operations Management, 5e, and Operations Management, 7e.
Distribusi Sampling.
8-Nov-18 QUALITY CONTROL 8-Nov-18 Rodeyar S.Pasaribu.
PETA KONTROL DATA ATRIBUT p-chart np-chart.
PENGENDALIAN KUALITAS
Transcript presentasi:

Statistic Process Control Week 3 Ananda Sabil Hussein, SE, MCom

Latar Belakang Pertengahan tahun 80 an pangsa pasar pager Motorola di rebut oleh produk-produk Jepang seperti halnya NEC, TOSHIBA dan Hitachi. Motorola melakukan perubahan radikal dengan memperbaiki mutu, pengembangan produk dan penurunan biaya yang berbasis statistik

Statistical Process Control Teknik statistik yang secara luas digunakan untuk memastikan bahwa proses yang sedang berjalan telah memenuhi standar.

Start Produce Good Provide Service Stop Process Yes No Assign. Causes? Take Sample Inspect Sample Find Out Why Create Control Chart

Variasi Alami dan Khusus Variasi alami adalah sumber-sumber variasi dalam proses yang secara statistik berada dalam batas kendali Variasi Khusus/dapat dihilangkan yaitu variasi yang muncul disebabkan karena peralatan yang tidak sesuai, karyawan yang lelah atau kurang terlatih serta bahan baku baru.

Diagram Pengendalian

17 = UCL 15 = LCL 16 = Mean Sample number ||||||||||||

Konsep Rata-rata dan Jarak Rata-rata

Menentukan Batas Diagram Rata-rata Batas Kendali Atas (UCL) = Batas Kendali Bawah (LCL) = = rata-rata dari sampel = = Standar deviasi = 2 (95.5%) 3(99.7%) = Standar deviasi rata-rata sampel

Cara Lain Batas Kendali Atas = Batas Kendali Bawah Dimana : = rentangan rata-rata sampel = Nilai batas kendali = rata-rata dari sampel rata-rata

Batas Bagan Rentangan

Bagan Rata-rata(a) These sampling distributions result in the charts below (Sampling mean is shifting upward but range is consistent) R-chart (R-chart does not detect change in mean) UCL LCL x-chart (x-chart detects shift in central tendency) UCL LCL

R-chart (R-chart detects increase in dispersion) UCLLCL Figure S6.5 (b) These sampling distributions result in the charts below (Sampling mean is constant but dispersion is increasing) x-chart (x-chart does not detect the increase in dispersion) UCLLCL Bagan Jarak

Bagan Kendali Atribut Mengukur persentase penolakan dalam sebuah sampel, bagan-p Menghitung jumlah penolakan, bagan-c

 For variables that are categorical  Good/bad, yes/no, acceptable/unacceptable  Measurement is typically counting defectives  Charts may measure  Percent defective (p-chart)  Number of defects (c-chart) Control Charts for Attributes

Control Limits for p-Charts Population will be a binomial distribution, but applying the Central Limit Theorem allows us to assume a normal distribution for the sample statistics UCL p = p + z  p ^ LCL p = p - z  p ^ wherep=mean fraction defective in the sample z=number of standard deviations  p =standard deviation of the sampling distribution n=sample size ^ p(1 - p) n p =p =p =p = ^

Contoh Soal JamRata2JamRata2JamRata

Ditanyakan : Batas kendali proses 9 boks yang mencakup 99.7% Jawab : UCLx = = LCLx ==

Setting Control Limits Process average x = ounces Average range R =.25 Sample size n = 5

Setting Control Limits UCL x = x + A 2 R = (.577)(.25) = = ounces Process average x = ounces Average range R =.25 Sample size n = 5 From Table S6.1

Setting Control Limits UCL x = x + A 2 R = (.577)(.25) = = ounces LCL x = x - A 2 R = = ounces Process average x = ounces Average range R =.25 Sample size n = 5 UCL = Mean = LCL =

Contoh Soal SampleNumberFractionSampleNumberFraction Numberof ErrorsDefectiveNumberof ErrorsDefective Total = 80 (.04)(1 -.04) 100  p = =.02 ^ p = =.04 80(100)(20)

– – – – – – – – – – – – Sample number Fraction defective |||||||||| p-Chart for Data Entry UCL p = p + z  p = (.02) =.10 ^ LCL p = p - z  p = (.02) = 0 ^ UCL p = 0.10 LCL p = 0.00 p = 0.04

– – – – – – – – – – – – Sample number Fraction defective |||||||||| UCL p = p + z  p = (.02) =.10 ^ LCL p = p - z  p = (.02) = 0 ^ UCL p = 0.10 LCL p = 0.00 p = 0.04 p-Chart for Data Entry Possible assignable causes present

Control Limits for c-Charts Population will be a Poisson distribution, but applying the Central Limit Theorem allows us to assume a normal distribution for the sample statistics wherec=mean number defective in the sample UCL c = c + 3 c LCL c = c - 3 c

c-Chart for Cab Company c = 54 complaints/9 days = 6 complaints/day |1|1 |2|2 |3|3 |4|4 |5|5 |6|6 |7|7 |8|8 |9|9 Day Number defective – – – 8 8 – 6 6 – 4 – 2 – 0 0 – UCL c = c + 3 c = = LCL c = c - 3 c = = 0 UCL c = LCL c = 0 c = 6