Graf dan Analisa Algoritma Pertemuan #03 – Graf Planar & Pewarnaan Graf
Graf Planar Sebuah graf G = (V,E) disebut graf planar apabila graf tersebut dapat digambarkan dalam sebuah bidang datar tanpa ada sisi/edge yang saling berpotongan (kecuali sisi sisi berpotongan pada sebuah verteks) Contoh Graf Planar Contoh Graf Non-Planar
Graf Planar Graf yang termasuk Planar: Tree/Pohon Kubus Bidang Empat Bidang Delapan Beraturan
Region pada Graf Planar Pada penyajian planar/map, dikenal istilah region. Derajat dari suatu region adalah panjang walk batas region tersebut. Contoh:
Formula Euler untuk Graf Planar V – E + R = 2 V = jumlah simpul E = jumlah ruas R = jumlah region
Pewarnaan Simpul Pemberian warna terhadap simpul-simpul graf dimana 2 buah simpul yang berdampingan tidak boleh mempunyai warna yang sama G berwarna n artinya graf tersebut menggunakan n warna Bilangan kromatis dari G=K(G) adalah jumlah minimum warna yang dibutuhkan
Algoritma Welch-Powel Algoritma yang dapat digunakan untuk mendapatkan bilangan kromatis dari sebuah graf. Adapun langkah-langkahnya adalah: Urutkan semua simpul berdasarkan derajatnya, dari derajat besar ke derajat kecil Ambil warna pertama (misalnya merah), warnai simpul pertama yang sudah kita urutkan berdasarkan derajatnya tadi. Kemudian warnai simpul berikutnya yang tidak berdampingan dengan simpul pertama tadi dengan warna yang masih sama (merah) Kemudian kita lanjutkan dengan warna kedua, dan seterusnya, sampai semua simpul telah diberi warna
Algoritma Welch-Powel Berapa bilangan kromatis dari pewarnaan graf vertex-nya?
Penyelesaian Urutkan vertex berdasarkan derajat dari besar ke kecil: E, C, A, B, D, G, F, H Mewarnai: Ambil warna ke-1, misalnya hijau untuk E dan A yang tersisa adalah C, B, D, G, F, H Ambil warna ke-2, misalnya merah untuk C, H, D yang tersisa adalah B, G, F Warna ke-3 misalnya putih Selesai
Pewarnaan Region Pewarnaan region dari suatu graf planar (graf bidang) G adalah suatu pemetaan warna–warna ke region-region dari graf G sedemikian sehingga region-region yang bertetangga mempunyai warna yang berbeda.
Pewarnaan Region Berapa bilangan kromatis dari pewarnaan graf region-nya?
Penyelesaian Urutkan vertex berdasarkan derajat dari besar ke kecil: r6, r2, r3, r5, r4, r1 Mewarnai: Ambil warna ke-1, misalnya biru untuk r6 yang tersisa adalah r2, r3, r5, r4, r1 Ambil warna ke-2, misalnya merah untuk r2, r4, r1 yang tersisa adalah r3, r5 Warna ke-3 misalnya putih Selesai
Pewarnaan
Pertemuan #04 – Pohon (Tree) #99 Agenda Minggu Depan Pertemuan #04 – Pohon (Tree)