LIMIT DAN KEKONTINUAN
3.1 Limit Fungsi di Satu Titik Pengertian limit secara intuisi Perhatikan fungsi Fungsi diatas tidak terdefinisi di x=1, karena di titik tersebut f(x) berbentuk 0/0. Tapi masih bisa ditanyakan berapa nilai f(x) jika x mendekati 1 Dengan bantuan kalkulator dapat diperoleh nilai f(x) bila x mendekati 1, seperti pada tabel berikut x 0.9 0.99 0.999 0.9999 1 1.0001 1.001 1.01 1.1 1.9 1.99 f(x) 1.999 1.9999 ? 2.0001 2.001 2.01 2.1
Secara grafik 1 º Dari tabel dan grafik disamping terlihat bahwa f(x) mendekati 2 jika x mendekati 1 f(x) 2 Secara matematis dapat dituliskan Sebagai berikut f(x) x x Dibaca “ limit dari untuk x mendekati 1 adalah 2 Definisi(limit secara intuisi). Untuk mengatakan bahwa berarti bahwa bilamana x dekat, tetapi berlainan dengan c, maka f(x) dekat ke L
Contoh 1. 2. 3. 4. Ambil nilai x yang mendekati 0, seperti pada tabel berikut x 1 -1 1 -1 ? Dari tabel terlihat bahwa bila x menuju 0, sin(1/x) tidak menuju ke satu nilai tertentu sehingga limitnya tidak ada
Terdapat sedemikian sehingga Definisi limit jika L º L º c c Untuk setiap Terdapat sedemikian sehingga L º L º c c
Limit Kiri dan Limit Kanan Jika x menuju c dari arah kiri (dari arah bilangan yang lebih kecil dari c, limit disebut limit kiri, x c notasi Jika x menuju c dari arah kanan (dari arah bilangan yang lebih besar dari c, limit disebut limit kanan, c x notasi Hubungan antara limit dengan limit sepihak(kiri/kanan) Jika maka tidak ada
Contoh Diketahui 1. a. Hitung Jika ada b. Hitung) c. Hitung d. Gambarkan grafik f(x) Jawab Karena aturan fungsi berubah di x=0, maka perlu dicari limit kiri dan limit kanan di x=0
b. Karena aturan fungsi berubah di x=1, maka perlu dicari limit kiri dan limit kanan di x=1 Karena Tidak ada c. Karena aturan fungsi tidak berubah di x=2, maka tidak perlu dicari limit kiri dan limit kanan di x=2
d. di x=1 limit tidak ada º Untuk x 0 Untuk 0<x<1 Untuk f(x)=x 3 di x=1 limit tidak ada º 1 Untuk x 0 Untuk 0<x<1 Untuk f(x)=x Grafik: parabola Grafik:garis lurus Grafik: parabola
2. Tentukan konstanta c agar fungsi mempunyai limit di x=-1 Jawab Agar f(x) mempunyai limit di x=-1, maka limit kiri harus sama dengan limit kanan Agar limit ada 3+c=1-c c=-1
Soal Latihan A. Diberikan grafik suatu fungsi f seperti gambar berikut . Cari limit /nilai fungsi berikut, atau nyatakan bahwa limit /nilai fungsi tidak ada. 1. 5. 2. 6. f(-3) 7. f(-1) 3. 8. f(1) 4.
b. Selidiki apakah ada, jika ada hitung limitnya Soal Latihan B. 1. Diketahui : Hitung dan b. Selidiki apakah ada, jika ada hitung limitnya 2. Diketahui , hitung ( bila ada ) : a. b. c. , hitung ( bila ada ) 3. Diketahui a. b. c. c.
Sifat limit fungsi Misal (limit dari f , g ada dan berhingga) maka 1. 2. 3. 4. ,n bilangan bulat positif 5. bila n genap L harus positif
Prinsip Apit Misal untuk x disekitar c dan maka Contoh Hitung Karena
Limit Fungsi Trigonometri Contoh x 0 ekivalen dgn 4x 0
Soal Latihan Hitung 1. 2. 3. 4. 5.
Limit Tak Hingga dan Limit di Tak Hingga Ctt : g(x) 0 dari arah atas maksudnya g(x) menuju 0 dari nilai g(x) positif. g(x) 0 dari arah bawah maksudnya g(x) menuju 0 dari nilai g(x) negatif.
Contoh Hitung a. b. c. Jawab a. ,g(x)=x-1 akan menuju 0 dari arah bawah, karena x 1 dari kiri berarti x lebih kecil dari 1, akibatnya x-1 akan bernilai negatif Sehingga b. akan menuju 0 dari arah atas, karena x -1 dari kiri berarti x lebih kecil dari -1, tapi bilangan negatif yang lebih kecil dari -1 jika dikuadrat kan lebih besar dari 1 sehingga bernilai positif Sehingga
Jika x menuju dari arah kanan maka nilai sinx menuju 0 dari arah c. Karena f(x)=sinx dan x Jika x menuju dari arah kanan maka nilai sinx menuju 0 dari arah bawah(arah nilai sinx negatif) sehingga
Limit di Tak Hingga a. jika atau f(x) mendekati L jika x menuju tak hingga L x Contoh Hitung Jawab = 1/2
b. jika atau f(x) mendekati L jika x menuju minus tak hingga L x Contoh Hitung Jawab = 0
Contoh Hitung Jawab : Jika x , limit diatas adalah bentuk ( )
Soal Latihan Hitung 1. . 2. 3. 4. 5. 6.
Kekontinuan Fungsi Fungsi f(x) dikatakan kontinu pada suatu titik x = a jika (i) f(a) ada (ii) (iii) Jika paling kurang salah satu syarat diatas tidak dipenuhi maka f dikatakan tidak kontinu di x=a (i) f(a) tidak ada º a f tidak kontinu di x=a
(ii) Karena limit kiri(L1) tidak sama dengan limit kanan(L2) maka f(x) tidak mempunyai limit di x=a a Fungsi f(x) tidak kontinu di x=a f(a) ● (iii) f(a) ada L º ada Tapi nilai fungsi tidak sama dengan limit fungsi a Fungsi f(x) tidak kontinu di x=a
f(a) ada (iv) ada f(a) a f(x) kontinu di x=a Ketakkontinuan terhapus º Ketakkontinuan kasus (i) bisa dihapus dengan cara mendefinisikan nilai fungsi dititik tersebut = limit fungsi a
contoh Periksa apakah fungsi berikut kontinu di x=2, jika tidak sebutkan alasannya a. b. c. Jawab : a. Fungsi tidak terdefinisi di x=2 (bentuk 0/0) f(x) tidak kontinu di x=2 b. f(2) = 3 Karena limit tidak sama dengan nilai fungsi, maka f(x) tidak kontinu di x=2
c. Karena semua syarat dipenuhi f(x) kontinu di x=2
Kontinu kiri dan kontinu kanan Fungsi f(x) disebut kontinu kiri di x=a jika Fungsi f(x) disebut kontinu kanan di x=a jika Fungsi f(x) kontinu di x=a jika kontinu kiri dan kontinu kanan di x=a Contoh : Tentukan konstanta a agar fungsi Kontinu di x=2
Jawab : Agar f(x) kontinu di x=2, haruslah f kontinu kiri di x=2 2 + a = 4a – 1 -3a = -3 a = 1 f kontinu kanan di x=2 Selalu dipenuhi
Soal Latihan 1. Diketahui selidiki kekontinuan fungsi f(x) di x = -1 2. Agar fungsi kontinu pada R, maka berapakah a + 2b ? 3. Tentukan a dan b agar fungsi kontinu di x = 2
Kekontinuan pada interval Fungsi f(x) dikatakan kontinu pada interval buka ( a,b ) bila f(x) kontinu pada setiap titik di dalam interval tersebut. Sedangkan f(x) dikatakan kontinu pada interval tutup [ a,b ] bila : 1. f(x) kontinu pada ( a,b ) 2. f(x) kontinu kanan di x = a 3. f(x) kontinu kiri di x = b Bila f(x) kontinu untuk setiap nilai x R maka dikatakan f(x) kontinu ( dimana-mana ).
Teorema 3.2 Fungsi Polinom kontinu dimana-mana Fungsi Rasional kontinu pada Domainnya Misalkan , maka f(x) kontinu di setiap titik di R jika n ganjil f(x) kontinu di setiap R positif jika n genap. Contoh : tentukan selang kekontinuan Dari teorema diatas diperoleh f(x) kontinu untuk x-4>0 atau x>4. f(x) kontinu kanan di x=4 Sehingga f(x) kontinu pada [4, )
Soal Latihan A. Carilah titik diskontinu dari fungsi 1. 3. 2. B. Tentukan dimana f(x) kontinu 1. 2.
Limit dan Kekontinuan Fungsi Komposisi Teorema Limit Fungsi Komposisi: Jika dan f(x) kontinu di L, maka Teorema kekontinuan fungsi komposisi: Jika g(x) kontinu di a, f(x) kontinu di g(a), maka fungsi kontinu di a. Bukti karena f kontinu di g(a) = f(g(a)) karena g kontinu di a = (fog)(a)
Contoh Tentukan dimana fungsi kontinu Jawab : Fungsi f(x) dapat dituliskan sebagai komposisi dua fungsi atau dengan dan g(x) = cos x Karena h(x) kontinu di R-{-4,1} dan g(x) kontinu dimana-mana maka fungsi f(x) kontinu di R-{-4,1}