Seberapa Masifkah Bintang Bisa Jadi Lubang Hitam?

Slides:



Advertisements
Presentasi serupa
Teori terciptanya bumi
Advertisements

Benda Langit.
Alam Semesta (1) Alam semesta ini terdiri dari semua materi termasuk tenaga dan radiasi serta hal yang telah diketahui dan baru dalam tahap percaya bahwa.
Ledakan Bintang Akan Mengarah ke Bumi
Siswa Sekolah Ikut Meneliti Perilaku Sumber Sinar-X Misterius Apa artinya belajar? Apakah sekedar untuk berhasil lulus ujian ataukah bisa menghasilkan.
Gravitasi Lubang Hitam
Judhistira Aria Utama, M.Si. Jur. Pendidikan Fisika FPMIPA UPI
Judhistira Aria Utama, M.Si. Jur. Pendidikan Fisika FPMIPA UPI
Magnitudo Bintang Kala malam yang cerah datang, coba Anda keluar rumah ke halaman terbuka,dan perhatikan kerlap-kerlip bintang nun jauh di langit gelap.
Karakteristik Umum Matahari
PLANET DAN BENDA-BENDA ANTARIKSA
Struktur dan Dinamika Galaksi Bima Sakti
Assalamualaikum Wr.Wb.
TEROPONG Teropong atau teleskop adalah alat optik yang digunakan untuk melihat benda-benda yang sangat jauh agar tampak lebih dekat dan lebih jelas. Ada.
PARA MITTA PURBOSARI,M.Pd
Klik Korona pada Matahari Klik.
Teori ini berasal dari anggapan bahwa pada awal mulanya ada suatu masa yang luar biasa besarnya dengan berat jenis yang sangat besar akibat adanya.
LANGIT BERTABUR BINTANG
PERUBAHAN KENAMPAKAN BUMI DAN BULAN
GALAKSI dan TATA SURYA Materi kelas X. Galaksi dan Tata Surya galaksi Tata Surya KD: Mendeskripsikan tata surya dan jagad raya. Tujuan : Melalui proses.
Astrofisika I Oleh Djoni N. Dawanas Prodi Astronomi
Hubble Meniadakan Teori Alternatif Energi Gelap
Bahwa Alam Semesta Sudah Tua
BUMI DAN ALAM SEMESTA.
Membedah Supernova Galaksi Whirlpool
LEO, Sang Singa Raja Langit
TATA SURYA DAN KARAKTERISTIKNYA
Panen Exoplanet Oleh HARPS
Pulsar Ganda Membuktikan Kebenaran Teori Gravitasi Einstein
Cerita di Balik Pergolakan Awan Molekul Kelahiran Bintang
IPA TERPADU KLAS VIII BAB 13 TATA SURYA.
Peran Medan Magnet Dalam Pembentukan Bintang
WORKSHOP PENGEMBANGAN STANDAR ISI MAPEL IPA MI Kantor Kementerian Agama Provinsi Jawa Tengah 2010 Kantor Kementerian Agama Provinsi Jawa Tengah.
Ledakan Bintang Yang Mengubah Teori Supernova
Bintang Katai Putih Terpanas!
Dan Lukisan Langit Pun Berubah
Lubang Hitam Yang Bergerak Berlawanan Arah
Teori terciptanya bumi
Ledakan Kosmik, Kandidat Obyek Terjauh di Alam Semesta
TATA SURYA Anggota Tata Surya Planet 3. Satelit 4. Meteorid Asteroid
Sonnensystem alias Sistem tata surya
Bagaimana Lubang Hitam Terbentuk?
Supernova, Cara Bintang Mengakhiri Hidupnya
Gravitasi Newton.
BUMI DAN TATA SURYA KELOMPOK 1 Anggi Juliansa ( )
Bintang Katai Putih Karbon Berpulsasi Berhasil Ditemukan
Mengungkap Rahasia Hanny’s Voorwerp
PEMBELAJARAN TATA SURYA MENGGUNAKAN TEKNOLOGI INSFORMASI DAN KOMUNIKASI EDY SISWANTO, S.Pd SMP NEGERI 1 PURWOHARJO DINAS PENDIDIKAN PEMUDA DAN OLAH RAGA.
MENGENAL ALAM SEMESTA BASIC NATURAL SCIENCE.
PLANET MERKURIUS KELOMPOK 5 : Hutrimas Arimbi P.A (L )
Tata surya By,Philien Wowor.
GRAVITASI NEWTON Oleh : m barkah salim.
ILMU ALAMIAH DASAR ALAM semesta (1)
MEKANIKA BENDA LANGIT.
Keteraturan Gerak Planet dalam Tata Surya
Oleh : Rizky Kurniawan ( )
Kelompok 4: Ratu Lisa Wiliana Siti Kurniasih Widhi Kautsaryani
Perkembangan Ilmu Perbintangan
TATA SURYA.
PERUBAHAN PENAMPAKAN BUMI DAN BENDA LANGIT
NAMA KELOMPOK: DAFI RAFIF WAHYU AFNAN
BLACK HOLE (LUBANG HITAM)
Galaksi Jauh dari Alam Semesta Dini
Quasar Ganda Hasil Penggabungan Galaksi
Perilaku Materi Gelap Di Sekitar Lubang Hitam Supermasif
Tabrakan Bintang Ganda Masif
Herschel Mengungkap Bayi Bintang di Bima Sakti ( Dan Bukan Bayi Matahari di Tata Surya) Beberapa hari terakhir ini, langitselatan mendapat beberapa pertanyaan.
Ledakan Bintang Berhasil Dilihat Secara Langsung
BAHAN AJAR FISIKA SK : Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik KD : 1.2 Menganalisis keteraturan gerak planet dalam.
A S T R O N O M I DALAM PENENTUAN BULAN HIJRIAH
Transcript presentasi:

Seberapa Masifkah Bintang Bisa Jadi Lubang Hitam? Magnetar, tipe dalam Bintang Netron yang memiliki medan magnet ultra-kuat, bahkan ribuan kali lebih kuat dari bintang netron normal dan menjadikan mereka magnet paling kuat di kosmos. Dengan menggunakan Very Large Telescope milik ESO, astronom eropa untuk pertama kalinya bisa menyaksikan terbentuknya magnetar dari sebuah bintang yang massanya 40 kali massa Matahari. Ada yang menarik dari hasil pengamatan tersebut. Bagaimana tidak, hasil ini justru menjadi tatangan baru dalam teori evolusi bintang yang sudah ada. Menurut teori evolusi, bintang masif dengan massa seperti yang diamati oleh para astronom tersebut seharusnya berakhir sebagai sebuah lubang hitam bukannya magnetar. Dengan demikian muncul pertanyaan, bintang semasif apakah yang akan berakhir sebagai lubang hitam? Pengamatan Gugus Westerlund 1 Cerita ini dimulai dari penelitian para astronom yang mengamati gugus bintang muda Westerlund 1 yang berada pada jarak 16000 tahun cahaya di rasi bintang Ara (the Altar). Westerlund 1 memang merupakan kebun bintang sekaligus gugus bintang super terdekat yang diketahui dan memiliki ratusan bintang yang sangat masif, yang walaupun berbeda-beda namun sangat eksotis. Kesamaan bintang-bintang dalam gugus ini adalah, mereka memiliki usia yang sama dalam rentang 3,5 – 5 juta tahun. Hal ini disebabkan karena gugus Westerlund 1 memang terbentuk dari satu kejadian pembentukan bintang. Sebagian bintang di Westerlund 1 bersinar terang dengan kecerlangan hampir mencapai 1 juta kali kecerlangan Matahari dan untuk ukurannya sebagian bintang disana memiliki diameter 2 ribu kali diameter Matahari. Jika dibandingkan, diameter tersebut sebesar orbit Saturnus. Bahkan seandainya Matahari berada di jantung gugus yang luar biasa ini, bisa dipastikan langit malam di Bumi akan dipenuhi bintang-bintang yang cemerlang seperti halnya bulan Purnama. Mengenal Magnetar Yang Tersisa di Gugus Westerlund 1 Magnetar merupakan tipe bintang netron yang memiliki medan magnet ultra kuat – sekitar 1 juta triliun kali lebih kuat dari medan magnet Bumi. Medan magnet ultra kuat tersebut bisa terbentuk saat bintang dengan massa tertentu mengakhiri hidupnya dengan meledak sebagai Supernova. Di dalam gugus Westerlund 1, terdapat beberapa magnetar yang sudah di kenal di Bima Sakti. Dari rumahnya di gugus inilah, para astronom bisa menyimpulkan kalau magnetar yang mereka lihat terbentuk dari bintang dengan massa 40 massa Matahari. Karena semua bintang di Westerlund 1 memiliki usia yang sama, bintang yang meledak dan meninggalkan sisa magnetar tentu akan memiliki waktu hidup yang lebih pendek dari bintang yang masih ada di gugus tersebut. Kala hidup bintang itu selalu terkait dengan massanya. Kalau massa bintang itu besar, kala hidupnya juga pendek. Dengan demikian, jika dilakukan pengukuran pada massa bintang yang masih ada di gugus, maka akan diketahui kalau bintang yang memiliki kala hidup lebih pendek dan telah menjadi magnetar tentu bintang yang lebih masif. Studi Bintang Ganda Para astronom kemudian mempelajari bintang-bintang yang berasal dari sistem bintang ganda gerhana W13 di gugus Westerlund 1. Hal ini disebabkan karena dalam sistem seperti ini, massa dapat langsung ditentukan dari gerak bintang. Dengan membandingkan bintang-bintang yang ada, para peneliti menemukan kalau bintang yang menjadi magnetar tentunya memiliki massa setidaknya 40 kali massa Matahari. Hasil ini jelas menjadi bukti untuk pertama kalinya kalau magnetar bisa terbentuk dari evolusi bintang masif yang secara normal seharusnya membentuk lubang hitam. Asumsi sebelumnya, bintang dengan massa awal antara 10 0 25 massa Matahari akan membentuk bintang netron sedangkan yang lebih masih atau lebih besar dari 25 massa Matahari akan membentuk lubang hitam. Namun untuk menjadi magnetar, bintang tersebut harus menghilangkan 9/10 massanya sebelum meledak sebagai supernova atau mereka akan tetap membentuk lubang hitam dari inti yang tersisa setelah bintang tersebut meledak. Nah, supaya bisa terjadi kehilangan massa yang demikian besar sebelum terjadinya ledakan merupakan tantangan baru untuk dipahami oleh para astronom sekaligus menjadi tantangan dari teori evolusi bintang yang ada saat ini. Pertanyaan lain pun muncul. Jadi seberapa masifkah sebuah bintang yang runtuh bisa membentuk lubang hitam jika bintang yang massanya 40 massa Matahari saja tidak berakhir dengan lubang hitam. Asal Mula si Magnetar Menurut cerita mekaisme pembentukan bintang yang dipostulatkan para astronom, sebuah bintang yang akan menjadi magnetar – (bintang pendahulu) – lahir bersama dengan bintang pasangan. Saat kedua bintang berevolusi mereka akan mulai berinteraksi. Dengan energi yang berasal dari gerak orbit yang dihasilkan dalam jumlah besar maka akan terjadi lontaran massa bintang yang sangat besar dari bintang pendahulunya. Hal menarik lainnya dari pengamatan tersebut, tidak ditemukan bintang pasangan di lokasi magnetar ditemukan. Penjelasannya, bisa jadi supernova yang kemudian menyisakan magnetar ledakannya telah menyebabkan sistem bintang tersebut hancur, dan melontarkan kedua bintang dari gugus dengan kecepatan tinggi. Jika memang demikian, bintang ganda memiliki peran penting untuk kehilangan massa bintang dalam evolusi bintang. Bahkan ia bisa menjadi rencana diet yang bagus bagi bintang-bintang yang kelebihan massa, karena dapat menghilangkan 95% massa awalnya.