Image Processing Nana Ramadijanti Laboratorium Computer Vision

Slides:



Advertisements
Presentasi serupa
Menggambarkan Data: Tabel Frekuensi, Distribusi Frekuensi, dan Presentasi Grafis Chapter 2.
Advertisements

Developing Knowledge Management dalam perusahaan Week 10 – Pert 19 & 20 (Off Class Session)
Pengujian Hipotesis untuk Satu dan Dua Varians Populasi
Algoritma & Pemrograman #10
Mata Kuliah : ALGORITMA dan STRUKTUR DATA 1.
PEMOGRAMAN BERBASIS JARINGAN
Hypertext & Hypermedia
SOCIAL MEDIA Widianto Nugroho, S.Sn. |
Hadi Syahrial (Health IT Security Forum)
Program Keahlian I – SI By Antonius Rachmat C, S.Kom
Materi Analisa Perancangan System.
Peta Kontrol (Untuk Data Variabel)
Statistika Nonparametrik PERTEMUAN KE-1 FITRI CATUR LESTARI, M. Si
1 Pertemuan > Desain fisik basis data Matakuliah: >/ > Tahun: > Versi: >
IT SEBAGAI ALAT UNTUK MENCIPTAKAN KEUNGGULAN KOMPETISI
Siklus Manajemen Pengetahuan
PERULANGANPERULANGAN. 2 Flow of Control Flow of Control refers to the order that the computer processes the statements in a program. –Sequentially; baris.
Slide 3-1 Elmasri and Navathe, Fundamentals of Database Systems, Fourth Edition Revised by IB & SAM, Fasilkom UI, 2005 Exercises Apa saja komponen utama.
Estimasi Prob. Density Function dengan EM Sumber: -Forsyth & Ponce Chap. 7 -Standford Vision & Modeling Sumber: -Forsyth & Ponce Chap. 7 -Standford Vision.
PENGANTAR URBAN DESAIN
1 IKI20210 Pengantar Organisasi Komputer Kuliah No. 18: I/O, Interupsi 15 November 2002 Bobby Nazief Johny Moningka
Review IS & Software System Concept Diah Priharsari PTIIK – Universitas Brawijaya Source: 1.Obrien & Marakas, Management Information.
Introduction to The Design & Analysis of Algorithms
IF-ITB/SAS/25Aug2003 IF7074 – Bagian Pertama Page 1 IF 7047 Kewirausahaan Teknologi Informasi Bagian Pertama: 1.1. Entrepreneurship, entrepreneur, dan.
1 KOMPONEN PERUMUSAN PROGRAM KOMUNIKASI 1.Assesment - Focus the target audience 2.Planning - Target audience - Key of consumer benefit - Believe of the.
Artificial Intelligence
KNOWLEDGE MANAGEMENT: philosophy, processes, and pitfalls EXTRACTED FROM Soo, Devinney, Midgley, Deering (2002) CALIFORNIA MANAGEMENT REVIEW, 44 (4) 1seri.
PROSES PADA WINDOWS Pratikum SO. Introduksi Proses 1.Program yang sedang dalam keadaan dieksekusi. 2.Unit kerja terkecil yang secara individu memiliki.
1. Objek dalam kalimat aktif menjadi subjek dalam kalimat pasif
KIMIA ORGANIK II ELFI SUSANTI VH.
Review Operasi Matriks
Jeff Howbert Introduction to Machine Learning Winter Classification Nearest Neighbor.
MAINTENANCE OF THE EQUIPMENTS RECORD Competency : Making Audio Record In Studio.
Pengantar/pengenalan (Introduction)
Could not load an object because it is not avaliable on this machine. Tidak dapat memuat sebuah benda karena tidak tersedia pada mesin ini.
Pengolahan Citra - Pertemuan III – Image Enhancement Nana Ramadijanti
Bilqis1 Pertemuan bilqis2 Sequences and Summations Deret (urutan) dan Penjumlahan.
Menjelaskan sifat – sifat komponen elektronika aktif dan pasif
Risk Management.
1 Certified Assessor Training Galeri 678 Kemang, 26 – 28 Agustus 2008 Materi Kuliah Program Magister Psikologi Unika Atmajaya Agustus 2009 Disusun oleh.
Implementing an REA Model in a Relational Database
METODE SAMPLING by Achmad Prasetyo, S.Si., M.M..
MEMORY Bhakti Yudho Suprapto,MT. berfungsi untuk memuat program dan juga sebagai tempat untuk menampung hasil proses bersifat volatile yang berarti bahwa.
3 nd Meeting Chemical Analysis Steps and issues STEPS IN CHEMICAL ANALYSIS 1. Sampling 2. Preparation 3. Testing/Measurement 4. Data analysis 2. Error.
1 Magister Teknik Perencanaan Universitas Tarumanagara General View On Graduate Program Urban & Real Estate Development (February 2009) Dr.-Ing. Jo Santoso.
2nd MEETING Assignment 4A “Exploring Grids” Assignment 4 B “Redesign Grids” Create several alternatives grid sysytem using the provided elements: (min.
BENTUK ING VERB + ING. Bentuk ING juga biasa disebut dengan ING form Meskipun pembentukannya sangat se- derhana tetapi penggunaannya mem- punyai aturan.
Features Full Duplex Operation (Independent Serial Receive and Transmit Registers) Asynchronous or Synchronous Operation Master or Slave Clocked Synchronous.
Roundtable discussion on citizen engagement for good governance in East Indonesia diskusi keterlibatan penduduk untuk tata pemerintahan yang baik di Indonesia.
LOGO Manajemen Data Berdasarkan Komputer dengan Sistem Database.
PEMROGRAMAN PPBD (UAS) SEBELUM MELANGKAH KE TAHAP SELANJUTNYA BERDOA DULU BIAR LANCAR DAN GA EROR
Definisi VLAN Pemisahan jaringan secara logis yang dilakukan pada switch Pada tradisional switch, dalam satu switch menunjukkan satu segmentasi LAN.
Metodologi Penelitian dalam Bidang Informatika
PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN Jl. Letjen. Sutoyo Pontianak, Telp. (0561) , Website:
Pemrograman Sistem Basis Data Chapter II Database Sistem (Lanjutan)
3.1 © 2007 by Prentice Hall OVERVIEW Information Systems, Organizations, and Strategy.
Diagnose device problems that connected to the Wide Area Network Identify problems Through the Symptoms that arise HOME.
Contentment Philippians 4: Contentment What does it mean to be content? What does it mean to be content? Are you a content person? Are you a content.
SMPN 2 DEMAK GRADE 7 SEMESTER 2
MANPRO-M13: MUTU PROYEK SISTEM
1. 2 Work is defined to be the product of the magnitude of the displacement times the component of the force parallel to the displacement W = F ║ d F.
MAINTENANCE AND REPAIR OF RADIO RECEIVER Competency : Repairing of Radio Receiver.
© 2009 Fakultas Teknologi Informasi Universitas Budi Luhur Jl. Ciledug Raya Petukangan Utara Jakarta Selatan Website:
MARKETING MIX (BAURAN PEMASARAN).
SISTEM TERDISTRIBUSI (SILABUS dan Introduction to Distributed Systems)
TCP, THREE-WAY HANDSHAKE, WINDOW
Retrosintetik dan Strategi Sintesis
Web Teknologi I (MKB511C) Minggu 12 Page 1 MINGGU 12 Web Teknologi I (MKB511C) Pokok Bahasan: – Text processing perl-compatible regular expression/PCRE.
Fuzzy for Image Processing
Modul 1 PENGANTAR PENGOLAHAN CITRA
Transcript presentasi:

Image Processing Nana Ramadijanti Laboratorium Computer Vision Politeknik Elekltronika Negeri Surabaya PENS-ITS 2009

Referensi Rafael C. Gonzales E.Woods,”Digital Image Processing,2nd Edition”,Prentice Hall,2001 Dadet Pramadihanto, Image Enhancement, Inhouse Training Politeknik Elektronika Negeri Surabaya, 1999. Riyanto Sigit dkk,”Step by Step dkk,Pengolahan Citra Menggunakan Visual C++”,Andi Offset Acmad Basuki dkk,Pengolahan Citra Menggunakan Visual Basic,Graha Ilmu

Materi DIP (16 minggu) : Differensiasi Pixel Metode Robert Pendahuluan Format Citra Citra Berwarna Citra gray-scale Citra Biner Transformasi Derajat Keabuan Binerisasi Transformasi Spasial Inversi Brightness Kontrass Auto level Histogram Histogram pada citra Perataan histogram Transformasi Fourier DFT DCT FFT Filter Pada Citra Konsep Filter Konvolusi Low Pass Filter High Pass Filter Generate Noise Reduksi Noise Pada Citra Pseudo Noise Filter Rata-rata Filter Gaussian Filter Median 9. Deteksi Tepi Differensiasi Pixel Metode Robert Metode Prewitt Metode Sobel 10. Format Warna RGB Normalized RGB HSV YCrCb 11. Histogram Warna Cubic RGB Histogram Segmen Warna 12. Thresholding Segmentasi Derajat Keabuan Adaptive Thresholding Segmentasi Area 13. Histogram Proyeksi 14. Thinning dan Skeletoning Thinning Skeletoning 15. Aplikasi Pengolahan Citra Image Retrieval Pengenalan Angka Deteksi Kulit 16. Pengantar Computer Vision

Penilaian UTS 30% UAS 45% Tugas 25%

Pengantar (Sumber : Lecture Notes Wanasanan Thongsongkrit) Early days of computing, data was numerical. Later, textual data became more common. Today, many other forms of data: voice, music, speech, images, computer graphics, etc. Each of these types of data are signals. Loosely defined, a signal is a function that conveys information

Hubungan DSP dengan Bidang Ilmu yang Lain (Sumber : Lecture Notes Wanasanan Thongsongkrit) As long as people have tried to send or receive through electronic media : telegraphs, telephones, television, radar, etc. there has been the realization that these signals may be affected by the system used to acquire, transmit, or process them. Sometimes, these systems are imperfect and introduce noise, distortion, or other artifacts.

Hubungan DSP dengan Bidang Ilmu yang Lain (Sumber : Lecture Notes Wanasanan Thongsongkrit) Understanding the effects these systems have and finding ways to correct them is the fundamental of signal processing. Sometimes, these signals are specific messages that we create and send to someone else (e.g., telegraph, telephone, television, digital networking, etc.). That is, we specifically introduce the information content into the signal and hope to extract it out later.

Hubungan DSP dengan Bidang Ilmu yang Lain (Sumber : Lecture Notes Wanasanan Thongsongkrit) Sometimes, these man-made signals are encoding of natural phenomena (audio signal, acquired image, etc.), but sometimes we can create them from scratch (speech generation, computer generated music, computer graphics). Finally, we can sometimes merge these technologies together by acquiring a natural signal, processing it, and then transmitting it in some fashion.

What is Image Processing ? Image processing is a subclass of signal processing concerned specifically with pictures. Improve image quality for human perception and/or computer interpretation. Image Image Processing Better Image

Beberapa Bidang Ilmu yang Berhubungan dengan Image Computer Graphics : the creation of images. Image Processing : the enhancement or other manipulation of the image – the result of which is usually another images. Computer Vision: the analysis of image content.

Pengolahan Data Berdasarkan Input/Output IMAGE DESKRIPSI Image Processing Computer Vision Grafika Komputer Data Mining dll.

Improvement of pictorial information for Dua Macam Aplikasi DIP Improvement of pictorial information for human interpretation Processing of image data for storage, transmission, and representation for autonomous machine perception

Bidang yang Memanfaatkan DIP Dikelompokkan berdasarkan sumber dari gambar Radiation from the Electromagnetic spectrum Acoustic Ultrasonic Electronic (in the form of electron beams used in electron microscopy) Computer (synthetic images used for modeling and visualization)

Alat-Alat Capture Sesuai Frekwensinya Diambil dari modul pelatihan image processing yang disusun oleh bapak Dadet Pramadihanto

Gamma-Ray Imaging Nuclear Image (a) Bone scan (b) PET (Positron emission tomography) image Astronomical Observations. (c) Cygnus Loop Nuclear Reaction (d) Gamma radiation from a reactor valve

X-Ray Imaging

Ultraviolet Imaging

Visible Imaging

Infrared Imaging

Imaging in Microwave Band Imaging radar : the only way to explore inaccessible regions of the Earth’s surface Radar image of mountains in southeast Tibet Note the clarity and detail of the image, unencumbered by clouds or other atmospheric conditions that normally interfere with images in the visual band.

Imaging in Microwave Band Geological applications : use sound in the low end of the sound spectrum (hundred of Hz) Mineral and oil exploration Cross-sectional image of a seismic model. The arrow points to a hydrocarbon (oil and/or gas) trap (bright spots)

Ultrasound Imaging Manufacturing Medicine (a) Baby (b) Another view of baby (c) Thyroids (d) Muscle layers showing lesion

Imagin in Radio Band

Generated Images by Computer Fractals : an iterative reproduction of a basic pattern according to some mathematical rules (a) and (b) 3-D computer modeling (c) and (d)

3 Types of Computerized Process Low-level : input, output are images Primitive operations such as image preprocessing to reduce noise, contrast enhancement, and image sharpening Mid-level : inputs may be images, outputs are attributes extracted from those images 􀂄 Segmentation 􀂄 Description of objects 􀂄 Classification of individual objects High-level : 􀂄 Image analysis

Fundamental Steps

Image Acquisition An image is captured by a sensor (such as a monochrome or color TV camera) and digitized. If the output of the camera or sensor is not already in digital form, an analog-todigital converter digitizes it.

Camera Camera consists of 2 parts 􀂄 A lens that collects the appropriate type of radiation emitted from the object of interest and that forms an image of the real object 􀂄 a semiconductor device – so called charged coupled device or CCD which converts the irradiance at the image plan into an electrical signal.

Frame Grabber Frame grabber only needs circuits to digitize the electrical signal from the imaging sensor to store the image in the memory (RAM) of the computer.

Image Processing Computer Vision Image Enhancement Image processing adalah suatu pengolahan data yang masukannya berupa gambar dan luarannya juga gambar Tujuan dari image processing adalah memperbaiki informasi pada gambar sehingga mudah terbaca atau memperbaiki kualitas dari gambar itu sendiri Computer Vision Image Enhancement Image Feature Extraction Color Image Processing Image Segmentation Image Compression

Model Image Sampling Kuantisasi Sampling menunjukkan banyaknya pixel (blok) untuk mendefinisikan suatu gambar Kuantisasi menunjukkan banyaknya derajat nilai pada setiap pixel (menunjukkan jumlah bit pada gambar digital  b/w dengan 2bit, grayscale dengan 8 bit, true color dengan 24 bit

Image Enhancement Proses untuk memperbaiki gambar seperti brightness, contrast, mengubah gambar menjadi gray-scale, inversi, reduksi noise,deteksi tepi dan sharpness Masukan Image Enhancement Luaran Brightness & Contrast Gray Scale Sharpness

Improving the appearance of an image Image Restoration Improving the appearance of an image Tend to be based on mathematical or probabilistic models of image degradation

Foundation for representing images in various degrees of resolution. Wavelet Foundation for representing images in various degrees of resolution. Used in image data compression and pyramidal representation (images are subdivided successively into smaller regions)

Reducing the storage required to save an Compression Reducing the storage required to save an image or the bandwidth required to transmit it. Ex. JPEG (Joint Photographic Experts Group) image compression standard.

Morphological Processing Tools for extracting image components that are useful in the representation and description of shape.

Image Segmentation computer tries to separate objects from the image background. 􀂄 It is one of the most difficult tasks in DIP. 􀂄 A rugged segmentation procedure brings the process a long way toward successful solution of an image problem. 􀂄 Output of the segmentation stage is raw pixel data, constituting either the boundary of a region or all the points in the region itself.

Contoh Image Segmentation Proses untuk mengelompokkan gambar sesuai dengan onyek gambarnya

Representation dan Description Representation -> make a decision whether the data should be represented as a boundary or as a complete region. 􀂄 Boundary representation -> focus on external shape characteristics, such as corners and inflections. 􀂄 Region representation -> focus on internal properties, such as texture or skeleton shape.

Representation dan Description

Recognition & Interpretation Recognition -> the process that assigns a label to an object based on the information provided by its descriptors. Interpretation -> assigning meaning to an ensemble of recognized objects.

Knowledge Base a problem domain -> detailing regions of an image where the information of interest is known to be located. Help to limit the search

Persoalan di dalam Image Processing Capture Modeling Feature Extraction Image Segmentation

Permasalahan Capture Capture (Menangkap Gambar) merupakan proses awal dari image processing untuk mendapatkan gambar. Proses capture membutuhkan alat-alat capture yang baik seperti kamera, scanner, light-pen dan lainnya, agar diperoleh gambar yang baik. Gambar yang baik akan banyak membantu dalam proses selanjutnya.

Permasalahan Modeling Dalam modeling diperlukan analisa matematika yang cukup rumit, khususnya pemakaian kalkulus, dan transformasi geometri. (inilah sebabnya di jurusan TI mata kuliah matematika menjadi sangat penting!!)

Permasalahan Feature Extraction Setiap gambar mempunyai karakteristik tersendiri, sehingga fitur tidak dapat bersifat general tetapi sangat tergantung pada model dan obyek gambar yang digunakan. Fitur dasar yang bisa diambil adalah warna, bentuk dan tekstur. Fitur yang lebih kompleks menggunakan segmentasi, clustering dan motion estimation. Pemakaian statistik dan probabilitas, pengolahan sinyal sampai pada machine learning diperlukan di sini.

Fitur Warna Fitur ini digunakan bila setiap obyek gambar mempunyai warna yang spesifik Color Thresholding Merah Color Thresholding Hijau Color Histogram Gray-scale Histogram

Fitur Bentuk Fitur ini digunakan bila gambar setiap obyek mempunyai bentuk yang spesifik Deteksi Tepi Integral Proyeksi Kuantisasi Rata-rata

Fitur Tekstur Beberapa algoritma untuk mendapatkan fitur tekstur: FFT Wavelets Image Filter Filter Gabor Beberapa algoritma untuk mendapatkan fitur tekstur:

Permasalahan Image Segmentation Bagaimana memisahkan obyek gambar dengan backgroundnya Bagaimana memisahkan setiap obyek gambar. Teknik clustering apa yang sesuai dengan model dan obyek gambar yang digunakan

Ex : Postal Code Problem

APLIKASI IMAGE PROCESSING Biometric Medical Image Image Databases Robot Vision Motion Capture Document Analysis

Biometric

Medical Image

Image Databases

Robot Vision

Motion Capture

Document Analysis

Tugas Pertemuan I Cari satu paper bhs Inggris (IEEE), aplikasi DIP/Computer Vision dan jelaskan ( bagan) : Acquisition Preprocessing Segmentation Representation dan Description Recognation dan Interpretation Knowledge Base No 1/3/4/5/6 bila tidak dicantumkan berikan penjelasan dari blok diagram sistemnya/rangkumannya. Tidak harus semua bagian (1-6) ada/dipakai di paper (sesuai dengan papernya) Syarat : Paper IEEE, ditulis th 2007-2009 Tuliskan judul paper,pengarang, dan th nya Paper, dan Penjelasannya, dikumpulkan jadi 1 cd paling lambat pertemuan minggu ke 2 selasa,6 Oktober 2009.

SekilaS InfO Ada beberapa hal yang harus dikuasai sebelum menguasai materi di dalam image processing yaitu: matematika, aljabar, pengolahan sinyal, statistik dan pemrograman.

BergaBunglah denGan Kami Laboratorium Computer Vision Politeknik Elektronika Negeri Surabaya PENS-ITS 2005