VEKTOR Mata Kuliah : Matematika Elektro Oleh : Warsun Najib

Slides:



Advertisements
Presentasi serupa
MATRIKS DAN DETERMINAN
Advertisements

Selamat Datang Dalam Kuliah Terbuka Ini
BAB III VEKTOR.
Vektor dalam R3 Pertemuan
Translasi Rotasi Refleksi Dilatasi
Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Pilihan Topik Matematika -III” 2.
Selamat Datang Dalam Kuliah Terbuka Ini
Menerapkan konsep besaran fisika dan pengukurannya
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
VEKTOR VECTOR by Fandi Susanto.
Materi Kuliah Kalkulus II
MODUL KULIAH MATEMATIKA TERAPAN
Vektor dan Skalar Vektor adalah Besaran yang mempunyai besar dan arah.
DEPARTEMEN TEKNIK ELEKTRO UNIVERSITAS INDONESIA
Vektor oleh : Hastuti.
Bab 4 vektor.
ALJABAR LINIER & MATRIKS
Aljabar Vektor (Perkalian vektor-lanjutan)
Program Studi Teknik Elektro, UNIVERSITAS JENDERAL SOEDIRMAN
Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan)
MEDAN LISTRIK.
MEDAN LISTRIK.
Pengantar Vektor.
BAB I SISTEM BILANGAN.
1 Matrix & Transformasi Linear TONY HARTONO BAGIO 2004.
VEKTOR Besaran Skalar dan Besaran Vektor
BAB V (lanjutan) VEKTOR.
BAB 2 VEKTOR 2.1.
PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS BRAWIJAYA 2010
ALJABAR LINIER & MATRIKS
Vektor Ruang Dimensi 2 dan Dimensi 3
Kalkulus Vektor Pertemuan 13, 14, 15, & 16
Vektor By : Meiriyama Program Studi Teknik Komputer
Matakuliah : Kalkulus II
VEKTOR.
VEKTOR BUDI DARMA SETIAWAN.
BESARAN, SATUAN, DIMENSI, VEKTOR
BILANGAN BULAT Bilangan Bulat Operasi Hitung pada Bilangan Bulat
MATA KULIAH MATEMATIKA LANJUT 1 [KODE/SKS : IT / 2 SKS]
VEKTOR 2.1.
(Tidak mempunyai arah)
Tri Rahajoeningroem,MT T. Elektro - UNIKOM
VEKTOR Mata Kuliah : Kalkulus I Oleh : Ali Mahmudi
PERKALIAN VEKTOR Di sini ditanyakan apa yang dimaksud dengan fisika.
BAB 2 VEKTOR Pertemuan
Kalkulus 2 Vektor Ari kusyanti.
Vektor.
VektoR.
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
BAB 4 VEKTOR Home.
VEKTOR.
DIFERENSIAL VEKTOR Kuliah 1.
DOT PRODUCT dan PROYEKSI ORTHOGONAL
Pertemuan 2 Aljabar Vektor (Perkalian vektor)
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
Aljabar Linier Vektor Oleh: Chaerul Anwar, MTI.
ALJABAR LINIER & MATRIKS
BAB 3 VEKTOR 2.1.
Oleh : Farihul Amris A, S.Pd.
Pertemuan 2 Aritmatika Vektor.
PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS BRAWIJAYA 2010
5.
VEKTOR.
Pengantar Teknologi dan Aplikasi Elektromagnetik
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
BAB 2 VEKTOR 2.1.
VEKTOR Dosen : ANDI MARIANI RAMLAN, S.Pd., M.Pd
VEKTOR.
BESARAN & VEKTOR.
Vektor Indriati., ST., MKom.
Transcript presentasi:

VEKTOR Mata Kuliah : Matematika Elektro Oleh : Warsun Najib Jurusan Teknik Elektro FT UGM

Warsun Najib, 2005

1. Vektor di Ruang 2 Besaran Skalar dan Besaran Vektor Besaran skalar adalah besaran yang hanya memiliki besar (panjang/nilai) Ex: waktu, suhu, panjang, luas, volum, massa Besaran Vektor-> memiliki besar dan arah Ex: kecepatan, percepatan, gaya, momentum, medan magnet, medan listrik Notasi Vektor Ruas garis berarah yg panjang dan arahnya tertentu. Vektor dinyatakan dg huruf ū, u, u (bold), atau u (italic). Jika u menyatakan ruas garis berarah dari A ke B, maka ditulis dengan lambang u = AB Notasi u dibaca “vektor u” Warsun Najib, 2005

Penyajian Vektor Vektor sbg pasangan bilangan u = (a,b) a : komponen mendatar, b : komponen vertikal Vektor sbg kombinasi vektor satuan i dan j u = ai + bj Panjang vektor u ditentukan oleh rumus Warsun Najib, 2005

Kesamaan Vektor Dua buah vektor dikatakan sama besar bila besar dan arahnya sama. Misalkan u = (a,b) dan v = (c,d) Jika u = v, maka |u| = |v| arah u = arah v a=c dan b=d Warsun Najib, 2005

Dua Vektor mempunyai besar sama, arah berbeda Dua vektor sama, a = b a b Dua Vektor mempunyai besar sama, arah berbeda a b Dua vektor arah sama, besaran beda a b Dua Vektor besar dan arah berbeda Warsun Najib, 2005

Penjumlahan Vektor v u w = u + v Penjumlahan vektor menurut aturan segitiga dan aturan jajaran genjang Dalam bentuk pasangan bilangan sbb: Warsun Najib, 2005

Conoth Penggunaan Penjumlahan Vektor Gambar 154 hal 404 Buku Advance Engineering Mathematic Warsun Najib, 2005

Elemen Identitas Vektor nol ditulis 0 Vektor nol disebut elemen identitas u + 0 = 0 + u = u Jika u adalah sebarang vektor bukan nol, maka –u adalah invers aditif u yang didefinisikan sebagai vektor yang memiliki besar sama tetapi arah berlawanan. u – u = u + (-u) = 0 Warsun Najib, 2005

Pengurangan Vektor Selisih dua vektor u dan v ditulis u – v didefinisikan u + (-v) Dalam bentuk pasangan bilangan v u u w = u - v -v Warsun Najib, 2005

Perkalian Vektor dengan Skalar mu adalah suatu vektor dg panjang m kali panjang vektor u dan searah dengan u jika m > 0, dan berlawanan arah jika m < 0. u 2u Warsun Najib, 2005

Sifat-Sifat Operasi Vektor Komutatif  a + b = b + a Asosiatif  (a+b)+c = a+(b+c) Elemen identitas terhadap penjumlahan Sifat tertutup-> hasil penjumlahan vektor juga berupa vektor Ketidaksamaan segitiga |u+v| ≤ |u| + |v| 1u = u 0u = 0, m0 = 0. Jika mu = 0, maka m=0 atau u = 0 Warsun Najib, 2005

Sifat-Sifat Operasi Vektor (lanj.) (mn)u = m(nu) |mu| = |m||u| (-mu) = - (mu) = m (-u) Distributif : (m+n)u = mu + nu Distributif : m(u+v) = mu + mv u+(-1)u = u + (-u) = 0 Warsun Najib, 2005

Besar Vektor Hasil Penjumlahan dan Pengurangan Warsun Najib, 2005

Menghitung Besar Vektor Hasil Penjumlahan dan Pengurangan u + v u v θ u-v v θ u Warsun Najib, 2005

Menentukan Arah Vektor Hasil Penjumlahan dan Pengurangan u + v β α u u-v v α β u Warsun Najib, 2005

Vektor Posisi OA = a dan OB = b adalah vektor posisi. AB = AO + OB = OB – OA = b – a X Y A B b a Warsun Najib, 2005

Dot Product (Inner Product) Perkalian titik (dot product) a•b (dibaca a dot b) antara dua vektor a dan b merupakan perkalian antara panjang vektor dan cosinus sudut antara keduanya. Dalam bentuk komponen vektor, bila a = [a1,b1,c1] dan b = [a2,b2,c2], maka : a•b > 0 jika {γ| 0 < γ < 90o} a•b = 0 jika {γ| γ = 90o} a•b < 0 jika {γ| 90o < γ< 180o} Warsun Najib, 2005

Vektor Ortogonal Teorema Hasil perkalian dot product antara dua vektor bukan-nol adalah nol jika dan hanya jika vektor-vektor tersebut saling tegak lurus Vektor a disebut ortogonal thd vektor b jika a•b = 0, dan vektor b juga ortogonal thd vektor a. Vektor nol 0 ortogonal terhadap semua vektor. Untuk vektor bukan-nol a•b = 0 jika dan hanya jika cos γ = 0  γ = 90o = π/2 Warsun Najib, 2005

Besar dan Arah dalam Perkalian Dot Product Besar Sudut γ dapat dihitung dgn: Warsun Najib, 2005

Contoh Perkalian Dot Product a = [1,2,0] dan b = [3,-2,1] Hitung sudut antara dua vektor tsb Warsun Najib, 2005

Applications of Vector Product Moment of a force |P|=1000 lb 30o 1,5 ft Find moment of force P about the center of the wheel. Vektor moment (m) tegak lurus thd bidang roda (sumbu z negatif ). Warsun Najib, 2005

Scalar Triple Product Warsun Najib, 2005

Scalar Triple Product Geometric representation a,b,c vektor β sudut antara (bxc) dan a h tinggi parallelogram c b x c a β h b Warsun Najib, 2005

Referensi Advanced Engineering Mathematic, chapter 8 Warsun Najib, 2005