Problems in The Simplex Method

Slides:



Advertisements
Presentasi serupa
Pengujian Hipotesis untuk Satu dan Dua Varians Populasi
Advertisements

BAB III Metode Simpleks
1. 2 klasjab. rumpunjab. peringkatjab. persyaratanjab. stankompjab petajab&forjab anjab susun jab yg ideal (js-jf) pns yg ideal (kualitas, kuantitas.
PRESENT WORTH ANALYSIS
GRAPHICAL SOLUTION OF LINEAR PROGRAMMING PROBLEMS
TRIP GENERATION.
MAP - KARNAUGH.
Statistika Nonparametrik PERTEMUAN KE-1 FITRI CATUR LESTARI, M. Si
DUALITAS DALAM LINEAR PROGRAMING
Simpleks.
PROGRAMA LINIER Konsep dasar
ESTIMATION AND ROONDING OF NUMBERS
Teknik Pencarian Solusi Optimal Metode Grafis
SIMPLEKS BIG-M.
susy susmartini operations research II, 2006
Solving a Linear Programming Problem with Mixed Constraints Operation Research Minggu 3 Part 2.
Operational Research Linear Programming With Simplex Method
Review Operasi Matriks
BUSINESS OPERATION RESEARCH
PERTEMUAN VI Analisa Dualitas dan Sensitivitas Definisi Masalah Dual
Operations Management
Ekonomi Manajerial dalam Perekonomian Global
Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Pilihan Topik Matematika -I” 2.
Operations Research Linear Programming (LP)
PROGRAM LINIER : SOLUSI SIMPLEKS
PowerPoint presentation to accompany Operations Management, 6E (Heizer & Render) © 2001 by Prentice Hall, Inc., Upper Saddle River, N.J B-1 MATRIKULASI.
Pertemuan 3– Menyelesaikan Formulasi Model Dengan Metode Simpleks
Pertemuan 4– Analisis Post Optimal
Bab 11A Nonparametrik: Data Frekuensi Bab 11A.
Metode Simpleks Dengan Tabel
Goal Programming.
METODE SIMPLEKS OLEH Dr. Edi Sukirman, SSi, MM
METODE SIMPLEKS OLEH Dr. Edi Sukirman, SSi, MM
METODE SIMPLEKS PRIMAL Evi Kurniati, STP., MT.
Implementing an REA Model in a Relational Database
Pendugaan Parameter part 2
Linear Programming Metode Simplex
ELASTISITAS PERMINTAAN DAN PENAWARAN
Elastisitas.
PERTEMUAN V Kasus Khusus Aplikasi Metode Simpleks.
Linear Programming (Pemrograman Linier) Program Studi Statistika Semester Ganjil 2011/2012 DR. Rahma Fitriani, S.Si., M.Sc.
Operasi Hitung Campuran Bilangan Bulat
Metode Simpleks Primal (Teknik M & Dua Tahap) dan Simpleks Dual
PROGRAM LINIER : ANALISIS POST- OPTIMAL
SEGI EMPAT 4/8/2017.
PELUANG Teori Peluang.
Linear Programming (Pemrograman Linier) Program Studi Statistika Semester Ganjil 2011/2012 DR. Rahma Fitriani, S.Si., M.Sc.
Linear Programming.
5.MONTE CARLO 5.1. Metode Monte Carlo
DUALITAS DAN ANALISA SENSITIVITAS
Metoda Simplex Oleh : Hartrisari H..
Kuliah ke 12 DISTRIBUSI SAMPLING
ANUITAS BERTUMBUH DAN ANUITAS VARIABEL
Pola Bilangan Barisan & Deret GO Oleh: Hananto Wibowo, S. Pd. Si.
Linear Programming (Pemrograman Linier) Program Studi Statistika Semester Ganjil 2011/2012 DR. Rahma Fitriani, S.Si., M.Sc.
KEUNTUNGAN (RETURN) DAN RISIKO PORTOFOLIO
SEGI EMPAT Oleh : ROHMAD F.F., S.Pd..
Oleh : Devie Rosa Anamisa
ELASTISITAS PERMINTAAN DAN PENAWARAN
ARTIFICIAL VARIABLES -3X1 + 4X2 = -6
PEMROGRAMAN LINIER Pertemuan 2.
Analisis Sensitivitas
Linear Programming (Pemrograman Linier)
Modal Rp ?. Rp Rp. 1 Juta/hari.
ELASTISITAS PERMINTAAN DAN PENAWARAN
PROGRAM LINEAR.
BASIC FEASIBLE SOLUTION
Linear Programming (Pemrograman Linier) Program Studi Statistika Semester Ganjil 2011/2012 DR. Rahma Fitriani, S.Si., M.Sc.
ALGORITMA SIMPLEX Adalah prosedure aljabar untuk mencari solusi optimal sebuah model linear programming, LP.
Linear Programming (Pemrograman Linier)
Transcript presentasi:

Problems in The Simplex Method Minggu 3 Part 3

Solusi yang tidak fisibel (infeasible solution) Masalah yang tidak terbatas (The unbounded linear programming) Solusi optimal majemuk (The alternate optimal solution) Pivot row yang seri (degeneracy)

The infeasible linear programming problem No solution that satisfies the constraints and non-negativity conditions for the problem. Maximize Z = 2x1 + 4x2 subject to 2.5x1 + 3x2  300 5x1 + 2x2  400 2x2  150 x1  60 x2  60 with x1 , x2  0

Initial Simplex Tableau for Infeasibility Problem cj 2 4 -M cb BASIS x1 x2 S1 S2 S3 S4 A1 S5 A2 Solution 2.5 5 1 3 -1 300 400 150 60 Zj M -120M cj - Zj 2+M 4+M

Second Simplex Tableau for Infeasibility Problem cj 2 4 -M cb BASIS x1 x2 S1 S2 S3 S4 A1 S5 A2 Solution 2.5 5 1 -1 3 -3 -2 120 280 30 60 Zj M -4 240-6M cj - Zj 2+M -M-4

Third Simplex Tableau for Infeasibility Problem cj 2 4 -M cb BASIS x1 x2 S1 S2 S3 S4 A1 S5 A2 Solution 1 0.4 -2 -0.4 -1 1.2 -4 -1.2 48 40 30 12 60 Zj (0.8 + 0.4M) M (-1.6 + 1.2M) (1.6 - 1.2M 336 -12M cj - Zj (-0.8 - 0.4M) (-1.6 + 0.2M)

Final Simplex Tableau for Infeasibility Problem cj 2 4 -M cb BASIS x1 x2 S1 S2 S3 S4 A1 S5 A2 Solution 1 -0.2 -0.5 0.2 0.5 0.3 0.25 -0.3 -0.25 -1 1.2 -4 -1.2 -2 120 280 30 60 Zj (1.6 + 0.3M) (-0.4 + 0.05M) M 320 – 10M cj - Zj (-1.6 - 0.3M) (0.4 - 0.05M)

Infeasible LP Ketidaklayakan solusi Kesalahan memformulasi program linear

The unbounded linear programming If the objective function can be made infinitely large without violating any of the constraints. Maximize Z = 2x1 + 3x2 subject to x1 - x2  2 -3x1 + x2  4 with x1 , x2  0

Initial Simplex Tableau for Unbounded Illustration cj 2 3 cb BASIS x1 x2 S1 S2 Solution 1 -3 -1 4 Zj cj - Zj

Second Simplex Tableau for Unbounded Illustration cj 3 4 cb BASIS x1 x2 S1 S2 Solution -2 -3 1 6 Zj -9 12 cj - Zj 11

Suatu masalah yang tidak terbatas diidentifikasikan dalam simplex pada saat pemilihan pivot row tidak mungkin dilakukan  saat nilai pivot row negatif atau tak terhingga

The alternate optimal solution If two or more solutions yield the optimal objective value. Maximize Z = 10/3x1 + 4x2 subject to 2.5x1 + 3x2  300 5x1 + 2x2  400 2x2  150 with x1 , x2  0

Initial Simplex Tableau for Alternate Optimal Solution cj 10/3 4 cb BASIS x1 x2 S1 S2 S3 Solution 2.5 5 3 2 1 300 400 150 Zj cj - Zj Second Simplex Tableau for Alternate Optimal Solution cj 10/3 4 cb BASIS x1 x2 S1 S2 S3 Solution 2.5 5 1 -1.5 -1 0.5 75 250 Zj 2 cj - Zj -2

Third Simplex Tableau for Alternate Optimal Solution cj 10/3 4 cb BASIS x1 x2 S1 S2 S3 Solution 1 0.4 -2 -0.6 2 0.5 30 100 75 Zj 4/3 400 cj - Zj -4/3 Fourth Simplex Tableau for Alternate Optimal Solution cj 10/3 4 cb BASIS x1 x2 S1 S2 S3 Solution 1 -0.2 -1 0.5 0.3 -0.25 60 50 Zj 4/3 400 cj - Zj -4/3

Jika melakukan iterasi lanjut pada tabel simplex yang sudah memenuhi syarat optimal Diindikasikan oleh nilai 0 pada baris cj-zj untuk variabel bukan dasar Memberi keleluasaan pada perusahaan untuk memilih kombinasi produk

The concept of degeneracy in linear programming If one or more of the basic variables has a value of zero. Occurs whenever two rows satisfy the criterion of selection as pivot row. Maximize Z = 4x1 + 3x2 subject to x1 - x2  2 2x1 + x3  4 x1 + x2 + x3  3 with x1 , x2 , x3  0

Initial Simplex Tableau for Degeneracy Illustration cj 4 3 cb BASIS x1 x2 x3 S1 S2 S3 Solution Ratio 1 2 -1 2/1 = 2 4/2 = 2 3/1 = 3 Zj cj - Zj Second Simplex Tableau for Degeneracy Illustration cj 4 3 cb BASIS x1 x2 x3 S1 S2 S3 Solution Ratio 1 -1 2 -2 - 0/2 1/2 Zj -4 8 cj - Zj

Third Simplex Tableau for Degeneracy Illustration cj 4 3 cb BASIS x1 x2 x3 S1 S2 S3 Solution Ratio 1 0.5 -1 2 2/0.5 0/0.5 - Zj 8 cj - Zj -2 Fourth Simplex Tableau for Degeneracy Illustration cj 4 3 cb BASIS x1 x2 x3 S1 S2 S3 Solution Ratio 1 -1 2 -2 2/1 - 1/1 Zj 8 cj - Zj -3

Fifth Simplex Tableau for Degeneracy Illustration cj 4 3 cb BASIS x1 x2 x3 S1 S2 S3 Solution Ratio 1 -1 2 Zj 10 cj - Zj -2

Degenerasi muncul ketika terdapat pivot row yang seri Pilih salah satu pivot row secara acak dan lakukan iterasi lanjut secara normal