Metode Statistika (STK211)

Slides:



Advertisements
Presentasi serupa
DESKRIPSI DATA Pokok bahasan ke-4.
Advertisements

UKURAN NILAI PUSAT UKURAN NILAI PUSAT ADALAH UKURAN YG DAPAT MEWAKILI DATA SECARA KESELURUHAN JENIS UKURAN NILAI PUSAT : MEAN , MEDIAN, MODUS KUARTIL,
Statistika dan Aplikasi Komputer Sesi 2: Ukuran Sentral dan Persebaran
Teori Graf.
PENYEBARAN DATA Tujuan Belajar :
Statistika Deskriptif: Distribusi Proporsi
Kuswanto, Uji Normalitas  Untuk keperluan analisis selanjutnya, dalam statistika induktif harus diketahui model distribusinya  Dalam uji.
INTERAKTIF INTERAKTIF
Aritmatika Sosial.
Pertemuan II SEBARAN PEUBAH ACAK
UKURAN-UKURAN STATISTIK
LATIHAN SOAL-SOAL 1. Himpunan 2. Aritmatika Sosial 3. Persamaan GL.
Apakah anda yakin sebelum pelajaran
TENDENSI SENTRAL.
UKURAN PEMUSATAN Rata-rata, Median, Modus Oleh: ENDANG LISTYANI.
1 Diagram berikut menyatakan jenis ekstrakurikuler di suatu SMK yang diikuti oleh 400 siswa. Persentase siswa yang tidak mengikuti ekstrakurikuler.
di Matematika SMA Kelas XI Sem 1 Program IPS
(UKURAN PEMUSATAN DAN UKURAN PENYEBARAN)
STATISTIKA DAN PELUANG
Bab 11A Nonparametrik: Data Frekuensi Bab 11A.
STATISIKA Nama = Tri Utami NIM = Nama = Tri Utami NIM =
Konsep Peubah Definisi Skala pengukuran peubah
Latihan Soal Persamaan Linier Dua Variabel.
Mari Kita Lihat Video Berikut ini.
Statistika Deskriptif
Bab 6B Distribusi Probabilitas Pensampelan
LATIHAN SOAL DATA TUNGGAL
STATISTIKA CHATPER 4b (Ukuran Nilai Letak)
STATISTIKA OLEH : SURATNO, S.Pd SMAN 1 KALIWUNGU Kelas XI IPS
STATISTIK - I.
Oleh Widiyastuti,S.Pd, M.Eng SMA N 3 BOYOLALI
UKURAN PENYEBARAN DATA
METODE Statistika BAB 1. PENDAHULUAN.
BAB-4 UKURAN DESKRIPTIF VARIABEL NUMERIK By M. YAHYA AHMAD
Ukuran Pemusatan (Central Tendency)
Uji Normalitas.
Ukuran Pemusatan dan Ukuran Penyebaran
DISTRIBUSI FREKUENSI oleh Ratu Ilma Indra Putri. DEFINISI Pengelompokkan data menjadi tabulasi data dengan memakai kelas- kelas data dan dikaitkan dengan.
Eksplorasi Data Membuat dan Mengintepretasi diagram pencar
Peringkasan Data (Pemusatan dan Penyebaran)
Pertemuan III Statistika Dasar (Basic Statistics)
pemusatan kumpulan data
Nonparametrik: Data Peringkat 2
SEGI EMPAT 4/8/2017.
NILAI RATA-RATA (CENTRAL TENDENCY)
UKURAN PEMUSATAN DATA Sub Judul.
PENGUKURAN GEJALA PUSAT / NILAI PUSAT/UKURAN RATA-RATA
PROPOSAL PENGAJUAN INVESTASI BUDIDAYA LELE
Pertemuan 1 PRAKTIKUM STATISTIKA. Definisi Statistik dan Statistika Statistik adalah kumpulan data dalam bentuk angka maupun bukan angka yang disusun.
Kuliah ke 12 DISTRIBUSI SAMPLING
NOTASI PENJUMLAHAN ()
Bulan FEBRUARI 2012, nilai pewarnaan :
STATISKA Adlina Zhafarina Dea Aninditha Imadina Nur S Raihana Maynisa
DISTRIBUSI NORMAL.
Nonparametrik: Data Peringkat 2
SEGI EMPAT Oleh : ROHMAD F.F., S.Pd..
Statistika Deskriptif: Statistik Sampel
Statistika Deskriptif: Distribusi Proporsi
UKURAN PEMUSATAN Rata-rata (average) : B A B V
Teknik Numeris (Numerical Technique)
UKURAN PEMUSATAN DAN LETAK DATA
UKURAN LOKASI DAN VARIANSI
Korelasi dan Regresi Ganda
UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0)
Metode Statistika (STK211)
Metode Statistika (STK211)
Metode Statistika (STK211)
Metode Statistika (STK211)
STATISTIKA Pertemuan 3: Ukuran Pemusatan dan Penyebaran
Statistika Deksriptif
Transcript presentasi:

Metode Statistika (STK211) Pertemuan II Statistika Dasar (Basic Statistic)

Konsep Peubah Definisi Skala pengukuran peubah Peubah merupakan karakteristik dari objek yang sedang diamati, seperti tinggi tanaman, produksi, dll Skala pengukuran peubah Nominal : mengklasifikasikan Ordinal : mengklasifikasikan dan mengurutkan Interval : mengklasifikasikan, mengurutkan dan membedakan Rasio : mengklasifikasikan, mengurutkan, membedakan dan membandingkan

Statistika Deskripsi dan Eksplorasi Merupakan teknik penyajian dan peringkasan data sehingga menjadi informasi yang mudah dipahami. Penyajian data dapat dilakukan melalui: Tabel Gambar (histogram, plot, stem-leaf, box-plot) Peringkasan data dinyatakan dalam dua ukuran yaitu: Pemusatan (Median, Modus, Kuartil, Mean, dll) Penyebaran (Range, Interquartile Range, Ragam)

Ilustrasi I Penyajian Tabel Penyajian Grafik Rekapitulasi menurut Sex No Sex Tinggi Berat Agama 1 167 63 Islam 2 172 74 3 161 53 Kristen 4 157 47 Hindu 5 165 58 6 60 7 162 52 Budha 8 151 45 Katholik 9 158 54 10 11 176 82 12 69 13 163 57 14 15 164 16 50 17 159 61 18 65 19 62 20 169 59 21 173 70 Penyajian Tabel Rekapitulasi menurut Sex Sex Frek. Persen Laki-laki 12 57.14 Perempuan 9 42.86 Rekapitulasi menurut Agama Agama Frekuensi Persen Islam 13 61.90 Kristen 4 19.05 Katholik 2 9.52 Hindu 1 4.76 Budha Rata-rata Tinggi & Berat   Tinggi Berat Laki-laki 166.25 64.75 Perempuan 160.56 53.89 Gabungan 163.81 60.10 Penyajian Grafik

Ilustrasi II Penyajian Dengan Tabel dan Gambar Data Pengamatan Tanaman Obs Tinggi Pohon (m) Diameter Pohon (m) Varietas 1 3.5 0.25 A 2 4.0 0.40 3 2.8 0.20 B 4 3.2 0.21 C 5 3.6 0.30 6 4.2 0.35 7 2.9 0.22 8 2.5 0.18 9 3.8 0.38 10 4.6 0.41 11 2.2 0.15 12 3.4 0.28 D 13 0.37 14 4.8 0.39 15 5.0 Varietas Count CumCnt Percent CumPct A 5 5 33.33 33.33 B 3 8 20.00 53.33 C 3 11 20.00 73.33 D 4 15 26.67 100.00

Penyajian Dengan Tabel dan Gambar

Penyajian Dengan Stem-Leaf Stem-and-Leaf Display: Tinggi Pohon (m), Diameter Pohon (m) Stem-and-leaf of Tinggi Pohon (m) N = 15 Leaf Unit = 0.10 1 2 2 4 2 589 6 3 24 (3) 3 568 6 4 022 3 4 68 1 5 0 Stem-and-leaf of Diameter Pohon (m) N = 15 Leaf Unit = 0.010 2 1 58 5 2 012 7 2 58 (1) 3 0 7 3 5789 3 4 001

Penyajian Dengan Box-plot

Peringkasan Data (Pemusatan dan Penyebaran) Beberapa ukuran pemusatan, yaitu: Modus: Nilai pengamatan yang paling sering muncul Median: Pengamatan yang ditengah-tengah dari data terurut Quartil: Nilai-nilai yang membagi data terurut menjadi 4 bagian yang sama Mean: merupakan pusat massa (centroid) sehingga simpangan kiri dan simpangan kanan sama besar Beberapa ukuran penyebaran, yaitu: Range: besarnya penyebaran data dari data terkecil sampai data terbesar Interquartile Range: besarnya penyebaran data yang diukur mulai quartile satu sampai quartile tiga atau besarnya penyebaran data dari 50% pengamatan ditengah Ragam: merupakan rata-rata jarak kuadrat setiap titik pengataman terhadap nilai mean (rata-rata)

Langkah-langkah teknis Median Urutkan data dari kecil ke besar Cari posisi median (nmed=(n+1)/2) Nilai median Jika nmed bulat, maka Median=X(n+1)/2 Jika nmed pecahan, maka Median=(X(n)/2+ X(n)/2+1)/2 (rata-rata dua pengamatan yang berada sebelum dan setelah posisi median)

Kuartil (Quartile) Metode Belah dua Urutkan data dari kecil ke besar Cari posisi kuartil nq2=(n+1)/2 nq1=(nq2*+1)/2= nq3, nq2* posisi kuartil dua terpangkas (pecahan dibuang) Nilai kuartil 2 ditentukan sama seperti mencari nilai median. Kuartil 1 dan 3 prinsipnya sama seperti median tapi kuartil 1 dihitung dari kiri, sedangkan kuartil 3 dihitung dari kanan.

Metode Interpolasi Urutkan data dari kecil ke besar Cari posisi kuartil nq1=(1/4)(n+1) nq2=(2/4)(n+1) nq3=(3/4)(n+1) Nilai kuartil dihitung sebagai berikut: Xqi=Xa,i + hi (Xb,i-Xa,i) Xa,i = pengamatan sebelum posisi kuartil ke-i, Xb,i = pengamatan setelah posisi kuartil ke-i dan hi adalah nilai pecahan dari posisi kuartil

Jarak antar kuartil (Interquartile range) Rata-rata (Mean) Populasi: Sampel: Wilayah (Range) W=Xmax-Xmin Jarak antar kuartil (Interquartile range) JAK=q3-q1

Simpangan baku (standard deviation) Ragam (Variance) Populasi Sampel Simpangan baku (standard deviation) Merupakan akar dari ragam yaitu  simpangan baku populasi dan s simpangan baku sampel

Data pada ilustrasi II diolah menggunakan MINITAB Descriptive Statistics: Tinggi Pohon (m), Diameter Pohon (m) Variable N N* Mean StDev Variance Minimum Q1 Median Tinggi Pohon (m) 15 0 3.647 0.837 0.700 2.200 2.900 3.600 Diameter Pohon ( 15 0 0.2993 0.0919 0.00845 0.1500 0.2100 0.3000 Variable Q3 Maximum Range IQR Tinggi Pohon (m) 4.200 5.000 2.800 1.300 Diameter Pohon ( 0.3900 0.4100 0.2600 0.1800 Descriptive Statistics: Tinggi Pohon (m) Variable Varietas N N* Mean StDev Variance Minimum Q1 Tinggi Pohon (m) A 5 0 3.620 0.890 0.792 2.200 2.850 B 3 0 2.733 0.208 0.0433 2.500 2.500 C 3 0 3.667 0.503 0.253 3.200 3.200 D 4 0 4.350 0.719 0.517 3.400 3.600 Variable Varietas Median Q3 Maximum Range IQR Tinggi Pohon (m) A 3.800 4.300 4.600 2.400 1.450 B 2.800 2.900 2.900 0.400 0.400 C 3.600 4.200 4.200 1.000 1.000 D 4.500 4.950 5.000 1.600 1.350