METODE SIMPLEKS OLEH Dr. Edi Sukirman, SSi, MM

Slides:



Advertisements
Presentasi serupa
BAB III Metode Simpleks
Advertisements

Operations Management
William J. Stevenson Operations Management 8 th edition OPERATIONS RESEARCH Rosihan Asmara
SIMPLEKS BIG-M.
METODE SIMPLEKS Metode ini digunakan untuk kasus kasus yang melibatkan lebih dari dua variabel output.
Metode Simpleks Diperbaiki (Revised Simplex Method)
PERTEMUAN VI Analisa Dualitas dan Sensitivitas Definisi Masalah Dual
Operations Management
PROGRAM LINIER : SOLUSI SIMPLEKS
Pertemuan 3– Menyelesaikan Formulasi Model Dengan Metode Simpleks
METODE SIMPLEKS OLEH Dr. Edi Sukirman, SSi, MM
METODA SIMPLEKS Prof. Dr. M. Syamsul Maarif 1. MASALAH PRODUKSI: m bahan mentah (BM)i = 1, 2, 3, …………, m n produk jadi (PJ)j = 1, 2, 3, ……….., n a ij =
Riset Operasional Pertemuan 10
BENTUK PRIMAL DAN DUAL Dalam analisis Program Linear (PL) terdapat 2 bentuk, yaitu : 1. Bentuk Primal, yaitu bentuk asli dari pers. Program linear. 2.
Linear Programming Metode Simplex
PERTEMUAN III Metode Simpleks.
INVERS MATRIKS (dengan adjoint)
Metode Simpleks Primal (Teknik M & Dua Tahap) dan Simpleks Dual
Solusi Persamaan Linier
DUALITAS DAN ANALISA SENSITIVITAS
Metoda Simplex Oleh : Hartrisari H..
PENGAMBILAN KEPUTUSAN DALAM KONDISI PASTI
Indrawani Sinoem/TRO/SI/07
Widita Kurniasari, SE, ME Universitas Trunojoyo
SISTEM PERSAMAAN LINEAR
PEMROGRAMAN LINIER Pertemuan 2.
Analisis Sensitivitas
ANALISIS SENSITIVITAS (ANALISIS POSTOPTIMALITAS) Setelah ditemukan penyelesaikan yang optimal dr suatu masalah PL, kadang-kadang dirasa perlu utk menelaah.
Linear Programming (Pemrograman Linier)
LINIER PROGRAMMING PERTEMUAN KE-2.
BASIC FEASIBLE SOLUTION
TEKNIK RISET OPERASIONAL
Dosen : Wawan Hari Subagyo
PERTEMUAN METODE SIMPLEKS OLEH Ir. Indrawani Sinoem, MS
KASUS MINIMISASI Ir. Indrawani Sinoem, MS
LINEAR PROGRAMMING METODE SIMPLEX
BAHAN AJAR M.K. PROGRAM LINEAR T.A. 2011/2012
LINEAR PROGRAMMING Pertemuan 05
PENYELESAIAN MODEL LP PENYELESAIAN PERMASALAHAN DNG MODEL LP DAPAT DILAKUKAN DENGAN 2 METODE : (1). METODE GRAFIK Metode grafik hanya digunakan untuk.
Operations Management
Metode Simpleks Metode simpleks merupakan prosedur iterasi yang bergerak step by step dan berulang-ulang Jumlah variabel tidak terbatas Penyelesaian masalah.
Metode Simpleks Dyah Darma Andayani.
LINEAR PROGRAMMING : METODE SIMPLEKS
PENYELESAIAN MODEL LP PENYELESAIAN PERMASALAHAN DNG MODEL LP DAPAT DILAKUKAN DENGAN 2 METODE : (1). METODE GRAFIK Metode grafik hanya digunakan untuk.
Operations Management
Metode Simpleks Free Powerpoint Templates.
LINEAR PROGRAMMING Pertemuan 06
Operations Management
LINIER PROGRAMMING METODE SIMPLEX
MANAJEMEN SAINS METODE SIMPLEKS.
Operations Management
Metode Simpleks Free Powerpoint Templates.
Operations Management
Metode Simpleks Free Powerpoint Templates.
METODE BIG-M LINEAR PROGRAMMING
TEKNIK RISET OPERASI MUH.AFDAN SYARUR CHAPTER.1
SOAL Seleaikanlah sistem persamaan linear berikut dengan menggunakan metode Gauss-Jordan 3 X1+2 X2 + X3 = 7 3 X1- 2 X2 + X3 = 2 -3 X1+2 X2 + X3 = 4 HiJurusan.
PROGRAM LINIER METODE SIMPLEKS
Destyanto Anggoro Industrial Engineering
Metode Simpleks Metode simpleks merupakan prosedur iterasi yang bergerak step by step dan berulang-ulang Jumlah variabel tidak terbatas Penyelesaian masalah.
Metode Simpleks Free Powerpoint Templates.
Operations Management
METODE SIMPLEX LINEAR PROGRAMMING (LP)
Operations Management
Operations Management
Linier Programming METODE SIMPLEKS 6/30/2015.
Operations Management
Operations Management
Oleh : Siti Salamah Ginting, M.Pd. PROGRAM LINIER METODE SIMPLEKS.
6s-1LP Metode Simpleks William J. Stevenson Operations Management 8 th edition RISETOperasi.
Transcript presentasi:

METODE SIMPLEKS OLEH Dr. Edi Sukirman, SSi, MM PROGRAM LINEAR METODE SIMPLEKS OLEH Dr. Edi Sukirman, SSi, MM

METODE SIMPLEKS Metode Simpleks adalah suatu metode yg secara matematis dimulai dari suatu pemecahan dasar yg feasibel (basic feasible solution) ke pemecahan dasar feasibel lainnya dan dilakukan secara berulang-ulang (iteratif) sehingga akhirnya diperoleh suatu pemecahan dasar yang optimal.

Metode ini digunakan karena metode grafik tidak dapat menyelesaikan persoalan linear program yang memilki variabel keputusan yang cukup besar atau lebih dari dua.

Bentuk Standar Fungsi Batasan: Bentuk Standar Fungsi Objektif Maksimalkan: Z = C1X1 + C2X2 + C3X3 + … + CnXn Bentuk Standar Fungsi Batasan: a11X1 + a12X2 + a13X3 + … + a1nXn  b1 a21X1 + a22X2 + a23X3 + … + a2nXn  b2 . . . . . . am1X1 + am2X2 + am3X3 + … + amnXn  bm   X1  0 /ZA

Bentuk Matematis Maksimumkan Z = 3X1 + 5X2 Batasan (constrain)

m = macam batasan-batasan fasilitas yang tersedia n = macam kegiatan yang menggunakan fasilitas i = nomor fasilitas yang tersedia ( i=1,2,3,…,n ) j = nomor kegiatan yang menggunakan fasilitas tersedia ( j=1,2,3,…,m ) Xi = tingkat kegiatan i, (i=1,2,3,…,n) aij = banyaknya sumber i yang diperlukan untuk menghasilkan setiap unit kegiatan j, ( i=1,2,3,…,n ) ( j=1,2,3,…,m ) bi = banyaknya fasilitas i yang tersedia untuk dialokasikan ke setiap unit kegiatan i, ( i=1,2,3,…,n ) Z = nilai yang dioptimalkan (maksimumkan) Cj = kenaikan nilai Z bila ada pertambahan satu satuan kegiatan (xj)

Ada beberapa istilah yang sangat sering digunakan dalam metode simpleks, diantaranya : Iterasi adalah tahapan perhitungan dimana nilai dalam perhitungan itu tergantung dari nilai tabel sebelumnya. Variabel non basis adalah variabel yang nilainya diatur menjadi nol pada sembarang iterasi. Dalam terminologi umum, jumlah variabel non basis selalu sama dengan derajat bebas dalam sistem persamaan. Variabel basis merupakan variabel yang nilainya bukan nol pada sembarang iterasi. Pada solusi awal, variabel basis merupakan variabel slack (jika fungsi kendala merupakan pertidaksamaan ≤ ) atau variabel buatan (jika fungsi kendala menggunakan pertidaksamaan ≥ atau =). Secara umum, jumlah variabel basis selalu sama dengan jumlah fungsi pembatas (tanpa fungsi non negatif). Solusi atau nilai kanan merupakan nilai sumber daya pembatas yang masih tersedia. Pada solusi awal, nilai kanan atau solusi sama dengan jumlah sumber daya pembatas awal yang ada, karena aktivitas belum dilaksanakan.

Variabel slack adalah variabel yang ditambahkan ke model matematik kendala untuk mengkonversikan pertidaksamaan ≤ menjadi persamaan (=). Penambahan variabel ini terjadi pada tahap inisialisasi. Pada solusi awal, variabel slack akan berfungsi sebagai variabel basis. Variabel surplus adalah variabel yang dikurangkan dari model matematik kendala untuk mengkonversikan pertidaksamaan ≥ menjadi persamaan (=). Penambahan ini terjadi pada tahap inisialisasi. Pada solusi awal, variabel surplus tidak dapat berfungsi sebagai variabel basis. Variabel buatan adalah variabel yang ditambahkan ke model matematik kendala dengan bentuk ≥ atau = untuk difungsikan sebagai variabel basis awal. Penambahan variabel ini terjadi pada tahap inisialisasi. Variabel ini harus bernilai 0 pada solusi optimal, karena kenyataannya variabel ini tidak ada. Variabel hanya ada di atas kertas. Kolom kunci (kolom kerja) adalah kolom yang memuat variabel masuk. Koefisien pada kolom ini akn menjadi pembagi nilai kanan untuk menentukan baris kunci(baris kerja).

Baris kunci (baris kerja) adalah salah satu baris dari antara variabel basis yang memuat variabel keluar. Elemen kunci (elemen kerja) adalah elemen yang terletak pada perpotongan kolom dan baris kunci. Elemen kunci akan menjadi dasar perhitungan untuk tabel simpleks berikutnya. Variabel masuk adalah variabel yang terpilih untuk menjadi variabel basis pada iterasi berikutnya. Variabel masuk dipilih satu dari antara variabel non basis pada setiap iterasi. Variabel ini pada iterasi berikutnya akan bernilai positif. Variabel keluar adalah variabel yang keluar dari variabel basis pada iterasi berikutnya dan digantikan oleh variabel masuk. Variabel keluar dipilih satu dari antara variabel basis pada setiap iiterasi. Variabel ini pada iterasi berikutnya akan bernilai nol.

Model Umum Metode Simpleks. 1. Kasus Maksimisasi. Fungsi Tujuan : Maksimumkan Z – C1X1-C2X2- . . . . . –CnXn-0S1-0S2-. . .-0Sn = NK Fungsi Pembatas : a11X11+a12X12+. . . .+a1nXn+ S1+0S2+. . .+0Sn = b1 a21X21+a22X22+. . . .+a2nXn+ 0S1+1S2+. . .+0Sn = b2 ……. …….. ……. ….. ….. …. …..= … am1Xm1+am2Xm2+. . . .+amnXn+ S1+0S2+. . .+1Sn = bm Var. Kegiatan Slack Var

Tabel Simpleks : Var. Dasar X1 X2 . . . . Xn S1 S2 Sn NK Z -C1 -C2 -Cn a11 a12 . . . a1n 1 b1 a21 a22 a2n b2 am1 am2 amn bm

Fungsi Tujuan : Minimumkan 2. Kasus Minimisasi Fungsi Tujuan : Minimumkan Z – C1X1-C2X2- . . . . . –CnXn-0S1-0S2-. . .-0Sn = NK Fungsi Pembatas : a11X11+a12X12+. . . .+a1nXn - S1 -0S2-. . . - 0Sn = b1 a21X21+a22X22+. . . .+a2nXn - 0S1-1S2 -. . . - 0Sn = b2 ……. …….. ……. ….. ….. …. …..= … am1Xm1+am2Xm2+. . . .+amnXn- S1- 0S2 -. . . -1Sn = bm var.kegiatan Surplus var.

Tabel Simpleks : Var. Dasar X1 X2 . . . . Xn S1 S2 Sn NK Z -C1 -C2 -Cn a11 a12 . . . a1n -1 b1 a21 a22 a2n b2 am1 am2 amn bm

LINEAR PROGRAMMING METODE SIMPLEKS Langkah-langkah metode simpleks Langkah 1: Mengubah fungsi tujuan dan batasan-batasan Fungsi tujuan Z = 3X1 + 5X2 diubah menjadi Z - 3X1 - 5X2 = 0. Fungsi batasan (diubah menjadi kesamaan & di + slack variabel) (1) 2X1  8 menjadi 2X1 + X3 = 8 (2) 3X2  15 menjadi 3X2 + X4 = 15 (3) 6X1 + 5X2  30 menjadi 6X1 + 5X2 + X5 = 30 Slack variabel adalah variabel tambahan yang mewakili tingkat pengangguran atau kapasitas yang merupakan batasan

LINEAR PROGRAMMING METODE SIMPLEKS Fungsi tujuan : Maksimumkan Z - 3X1 - 5X2 = 0 Fungsi batasan (1) 2X1 + X3 = 8 (2) 3X2 + X4 = 15 (3) 6X1 + 5X2 + X5 = 30

Langkah 2: Menyusun persamaan-persamaan di dalam tabel Beberapa Istilah dlm Metode Simplek NK adalah nilai kanan persamaan, yaitu nilai di belakang tanda sama dengan ( = ). Untuk batasan 1 sebesar 8, batasan 2 sebesar 15, dan batasan 3 sebesar 30. Variabel dasar adalah variabel yang nilainya sama dengan sisi kanan dari persamaan. Pada persamaan 2X1 + X3 = 8, kalau belum ada kegiatan apa-apa, berarti nilai X1 = 0, dan semua kapasitas masih menganggur, maka pengangguran ada 8 satuan, atau nilai X3 = 8. Pada tabel tersebut nilai variabel dasar (X3, X4, X5) pada fungsi tujuan pada tabel permulaan ini harus 0, dan nilainya pada batasan-batasan bertanda positif

1. Tabel simpleks yang pertama Z = 3X1 + 5X2 diubah menjadi Z - 3X1 - 5X2 = 0. (1) 2X1  8 menjadi 2X1 + X3 = 8 (2) 3X2  15 menjadi 3X2 + X4 = 15 (3) 6X1 + 5X2  30 menjadi 6X1 + 5X2 + X5 = 30 1. Tabel simpleks yang pertama Variabel Dasar Z X1 X2 X3 X4 X5 NK 1 -3 -5 2 8 3 15 6 5 30

Langkah 3: Memilih kolom kunci Kolom kunci adalah kolom yang merupakan dasar untuk mengubah tabel simplek. Pilihlah kolom yang mempunyai nilai pada garis fungsi tujuan yang bernilai negatif dengan angka terbesar. Dalam hal ini kolom X2 dengan nilai pada baris persamaan tujuan –5. Berilah tanda segi empat pada kolom X2, seperti tabel berikut

2 Tabel simpleks: pemilihan kolom kunci pada tabel pertama Variabel Dasar Z X1 X2 X3 X4 X5 NK Keterangan (Indeks) 1 -3 -5 2 8 3 15 6 5 30 Jika suatu tabel sudah tidak memiliki nilai negatif pada baris fungsi tujuan, berarti tabel itu tidak bisa dioptimalkan lagi (sudah optimal).

Langkah 4: Memilih baris kunci Baris kunci adalah baris yang merupakan dasar untuk mengubah tabel simplek, dengan cara mencari indeks tiap-tiap baris dengan membagi nilai-nilai pada kolom NK dengan nilai yang sebaris pada kolom kunci. Indeks = (Nilai Kolom NK) / (Nilai kolom kunci) Untuk baris batasan 1 besarnya indeks = 8/0 = , baris batasan 2 = 15/3 = 5, dan baris batasan 3 = 30/5 = 6. Pilih baris yang mempunyai indeks positif dengan angka terkecil. Dalam hal ini batasan ke-2 yang terpilih sebagai baris kunci. Beri tanda segi empat pada baris kunci. Nilai yang masuk dalam kolom kunci dan juga masuk dalam baris kunci disebut angka kunci Langkah 5: Mengubah nilai-nilai baris kunci Nilai baris kunci diubah dengan cara membaginya dengan angka kunci, seperti tabel 3. bagian bawah (0/3 = 0; 3/3 = 1; 0/3 = 0; 1/3 = 1/3; 0/3 = 0; 15/3 = 5). Gantilah variabel dasar pada baris itu dengan variabel yang terdapat di bagian atas kolom kunci (X2).

3 Tabel simpleks: Cara mengubah nilai baris kunci Variabel Dasar Z X1 X2 X3 X4 X5 NK Keterangan (Indeks) 1 -3 -5 2 8 3 15 6 5 30 8/0 = ∞ 15/3 = 5 30/5 = 6 1 1/3 15/3 0/3 0/3 3/3 0/3 1/3 0/3 15/3

Langkah 6: Mengubah nilai-nilai selain pada baris kunci Rumus : Baris baru = baris lama – (koefisien pada kolom kunci) x nilai baru baris kunci Baris pertama (Z) [-3 -5 0, 0 ] (-5) [ 0 1 1/3 5 ] ( - ) Nilai baru = 5/3 25] Baris ke-2 (batasan 1) [2 1 0, 8 ] (0) [ 0 1/3 5 ] ( - ) Nilai baru = 8]

Tabel pertama nilai lama dan tabel kedua nilai baru Baris ke-4 (batasan 3) [ 6 5 1, 30 ] (5) [ 0 1 1/3 0, 5 ] ( - ) Nilai baru = -5/3 Tabel pertama nilai lama dan tabel kedua nilai baru Variabel Dasar Z X1 X2 X3 X4 X5 NK 1 -3 -5 2 8 3 15 6 5 30 5/3 25 1/3 -5/3

Langkah 7: Melanjutkan perbaikan Ulangilah langkah-langkah perbaikan mulai langkah 3 sampai langkah ke-6 untuk memperbaiki tabel-tabel yang telah diubah/diperbaiki nilainya. Perubahan baru berhenti setelah pada baris pertama (fungsi tujuan) tidak ada yang bernilai negatif Variabel Dasar Z X1 X2 X3 X4 X5 NK Keterangan (Indeks) 1 -3 5/3 25 2 8 1/3 5 6 -5/3 6/6 -5/18 1/6 5/6 = 8/2 = 4 = 5/6 (minimum) 6/6 0/6 0/6 (-5/3)/6 1/6 5/6

Nilai baru Baris ke-1 [-3 5/3 0, 25 ] (-3) [ 1 -5/18 1/6, 5/6] ( - ) 5/3 0, 25 ] (-3) [ 1 -5/18 1/6, 5/6] ( - ) Nilai baru = [ 0 5/6 ½, 271/2] Baris ke-2 (batasan 1) [ 2 1 0, 8 ] (2) [ 1 -5/18 1/6, 5/6] ( - ) Nilai baru = 5/9 -1/3, 61/3] Baris ke-3 tidak berubah karena nilai pada kolom kunci = 0 [ 0 1 1/3 0, 5 ] (0) [ 1 -5/18 1/6, 5/6] ( - ) Nilai baru = 5]

Tabel simpleks final hasil perubahan Variabel Dasar Z X1 X2 X3 X4 X5 NK 1 5/6 ½ 271/2 5/9 -1/3 61/3 1/3 5 -5/18 1/6 Baris pertama (Z) tidak ada lagi yang bernilai negatif. Sehingga tabel tidak dapat dioptimalkan lagi dan tabel tersebut merupakan hasil optimal Dari tabel final didapat X1 = 5/6 X2 = 5 Zmaksimum = 271/2