9. BILANGAN BULAT
9.1 Bilangan Bulat Bilangan bulat adalah bilangan cacah (whole number) positif, negatif, atau nol. Sebagai contoh, 3, – 6, 7, 85, 0, atau –56. Sedangkan bilangan-bilangan termasuk bilangan bulat. Himpunan bilangan bulat, dilambangkan dengan Z, didefinisikan sebagai berikut, Z = {..., -3, -2, -1, 0, 1, 2, 3, ...}
9.2 Sifat Pembagian Pada Bilangan Bulat Definisi 9.1 Misal a dan b adalah dua buah bilangan bulat dan a 0. Dikatakan bahwa a habis membagi b (a divides b) jika terdapat bilangan bulat c sedemikian rupa sehingga b = ac Dalam bentuk notasi: a|b jika b = ac, cZ dan a0 a habis membagi b, berarti b adalah kelipatan a
Jika hasil pembagian bilangan bulat adalah juga bilangan bulat, maka selalu terdapat: Hasil bagi dan sisa pembagian Teorema 9.1 Misal m dan n adalah dua bilangan bulat dengan syarat n > 0. Jika m dibagi dengan n maka terdapat dua buah bilangan bulat unik q (quotient) dan r (remainder), sedemikian sehingga, m = nq + r dengan syarat 0 r < n Teorema 9.1 diatas disebut teorema Euclidean. Bilangan n disebut pembagi (divisor), m bilangan yang dibagi (divident), q disebut hasil bagi (quotient), dan r disebut sisa (remainder).
Opertator yang digunakan untuk mengekspresikan hasil bagi dan sisa adalah mod dan div seperti berikut: m div n = q m mod n = r Contoh 9.1 1997 dibagi 87 memberikan hasil bagi = 22 dengan sisa 83 dan dapat ditulis menjadi 1997 = (87)(22) + 83 atau 1997 div 87 = 22 1997 mod 87 = 83
Contoh 9.2 dibagi 4, dapat ditulis menjadi = + 1 atau –47 div 4 = –12 –47 mod 4 = 1 –47 (4)(–12) Sebesar mungkin, tapi tidak melebihi Tidak boleh negatif
9.3 Pembagian Bersama Terbesar (PBB) Greatest Common Divisor (GCD) Pembagi bersama terbesar sering juga disebut dengan istilah “Faktor Persekutuan Terbesar (FPB)“ adalah faktor yang membagi habis dua buah bilangan atau lebih.
Contoh 9.3 60 memiliki faktor pembagi : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60. 48 memiliki faktor pembagi : 1, 2, 3, 4, 6, 8, 12, 24, 48. Faktor pembagi yang sama antara 60 dan 48 adalah: 1, 2, 3, 4, 6, 12. 12 merupakan faktor pembagi yang terbesar antara bilangan 60 dan 48. Jadi PBB (60, 48) = 12
Definisi 9.2 Misal a dan b adalah dua buah bilangan bulat 0. PBB dari a dan b adalah bilangan bulat terbesar d sedemikian sehingga d | a dan d | b, maka PBB (a, b) = d. Sifat-sifat PBB Misal a, b, dan c adalah bilangan bulat. Jika c adalah PBB dari a dan b maka c | (a + b) Jika c adalah PBB dari a dan b maka c | (a – b) Jika c | a, maka c | ab
Teorema 9.2 Jika m dan n adalah dua bilangan bulat dengan syarat n > 0 sedemikian sehingga, m = nq + r dengan syarat 0 r < n, maka PBB (m, n) = PBB (n, r)
Contoh 9.4 Jika 80 dibagi dengan 12 memberikan hasil 6 dan sisa 8, atau 80 = 12(6) + 8. Menurut teorema 9.2 PBB(80, 12) = PBB (12,8) = 4 Jika 12 dibagi 8 memberikan hasil 1 dan sisa 4, atau 12 = (8)(1) + 4 PBB(12, 8) = PBB (8, 4) = 4
9.4 Algoritma Euclidean Algoritma Euclidean adalah cara lain untuk menentukan PBB dua bilangan. Algoritma Euclidean adalah sebagai berikut: Jika n = 0, maka m adalah PBB(m, n); stop. Jika n 0, lanjutkan ke langkah 2. 2. Bagi m dengan n dan misalkan r adalah sisanya. 3. Ganti nilai m dengan n dan nilai n dengan r Catatan Jika m < n, maka pertukarkan nilai m dan n Contoh 9.5 Tentukan PBB (124, 48) dengan menggunakan algoritma Euclidean!
Penyelesaian: m = 124, n = 48 m = qn + r 124 = (48) (2) + 28 n = 0 m = 4 48 = (28) (1) + 20 28 = (20) (1) + 8 Jadi PBB (124,48) = 4 20 = (8) (2) + 4 8 = (4) (2) + 0 4 = (0)
Teorema 9.3 Misal a dan b adalah dua buah bilangan bulat positif, maka terdapat bilangan bulat m dan n sedemikian sehingga PBB (a, b) = ma + nb Teorema 9.3 menyatakan bahwa PBB dua buahg bilangan bulat a dan b dapat dunyatakan sebagai komnasi lanjat (linear combination) dengan m dan n Sebagai koeffisien-koeffisiennya. Misal PBB (80, 12) = 4, dan 4 = (–1) . 80 + 7 . 12 m = –1 n = 7
Metode untuk menemukan kombinasi lanjar dari dua buah bilangan sma dengan PBB-nya adalah dengan melakukan pekerjaan pembagian secara mundur pada algoritma Euclidean. Contoh 9.6 Nyatakan PBB (312, 70) = 2 sebagai kombinasi lanjar dari 312 dan 70 Penyelesian
Terapkan algoritma Euclidean untuk memperoleh PBB (312, 70) = 2 312 = 4.70 + 32 (i) 70 = 2.32 + 6 (ii) 32 = 5.6 + 2 (iii) 6 = 3. 2 + 0 (iv) Susun pembagian (iii) menjadi 2 = 32 – 5 . 6 (v) Susun pembagian (ii) menjadi 6 = 70 – 2.32 (vi) Sulihkan (vi) ke (v) menjadi 2 = 32 – 5 (70 – 2. 32) ` = 32 – 5.70 + 10.32 = 11. 32 – 5 . 70 (vii)
Susun pembagian (i) menjadi 32 = 312 – 4 . 70 (viii) Sulihkan (viii) ke (vii) menjadi 2 = 11. 32 – 5 . 70 = 11 ( 312 – 4.70) – 5. 70 = 11.312 – 49 . 70 Jadi PBB (312, 70) = 2 = 11 . 312 – 49 . 70
Relatif Prima Definisi 9.3 Dua buah bilangan bulat a dan b dikatakan relatif prima (relatively prime) jika PBB (a, b) = 1 Berdasarkan definisi diatas, jika a dan b relatif prima, maka dapat ditemukan bilangan bulat m dan n sedemikian sehingga ma + nb = 1 Contoh 9.7 Buktikan bahwa 20 dan 3 adalah relatif prima. Bukti:
20 = 6.3 + 2 (i) 3 = 1.2 +1 (ii) 2 = 1.1 + 1 (iii) 1 = 1.1 + 0 (iv) Dari (iii) 1 = 2 – 1.1 (v) Dari (ii) 1 = 3 – 1.2 (vi) Sulihkan (v) ke (vi) 1 = 2 – 1 (3 – 1.2 ) = 2 – 1.3 + 1.2 = 2.2 – 1.3 (vii) Susun persamaan (i) menjadi 2 = 20 – 6.3 (viii) Sulihkan (viii) ke (vii) 1 = 2(20 – 6.3) – 1 . 3 = 2 . 20 – 13 . 3 = 1 (terbukti) dengan nilai m = 2 , n = –13
9.5 Aritmatika Modulo Definisi 9.4 Misal a adalah bilangan bulat dan m adlah bilangan bulat > 0. Operasi a mod m (dibaca “a modulo m”) memberikan sisa jika a dibagi dengan m. Dengan kata lain a mod m sedemikian sehingga a = mq + r dengan 0r < m. Hasil aritmatika modulo m terletak dalam himpunan {0, 1, 2, … , m – 1}
Contoh 9. 8 Tentukan hasil operasi aritmatika modulo berikut! 29 mod 6 32 mod 4 7 mod 9 –53 mod 11 –39 mod 13 Penyelesaian 29 mod 6 = 4, sebab 29 dibagi 6 memberikan hasil berupa bilangan bulat (q) = 6 dan sisa (r) = 4 b) 32 mod 4 = 0, sebab 32 dibagi 4 memberikan hasil berupa bilangan bulat (q) = 8 dan sisa (r) = 0 c) 7 mod 9 = 7, sebab 7 dibagi sembilan memberikan hasil berupa bilangan bulat (q) = 0 dan sisa (r) = 7
d) –53 mod 11 e) –39 mod 13 Petunjuk. Jika a negatif dan (|a| mod m) 0, maka dapat menggunakan rumus a mod m = m – (|a| mod m) –53 mod 11 = 11 – (|–53| mod 11) = 11 – (53 mod 11) = 11 – 9 = 2 Karena (|a| mod m) = 0, maka tidak bisa menggunakan rumus untuk d). –39 mod 13 = 0, sebab –39 dibagi 13 memberikan hasil berupa bilangan bulat (q) = –3 dan sisa (r) = 0
Kongruen Jika dua buah bilangan bulat a dan b mempunyai sisa yang sama apabila dibagi dengan bilangan positf m maka a dan b dikatakan kongruen dan dilambangkan dengan a b (mod m). Lambang “” dibaca kongruen. Jika a dan b tidak kongruen dalam modulo m, maka ditulis a b (mod m). Definisi 9.5 Misal a dan b adalah dua bilangan bulat dan m adalah bilangan > 0, maka dikatakan a b (mod m) jika m habis membagi a – b
Contoh 9. 9 Buktikan bahwa: 29 4 (mod 5) –6 14 (mod 4) Bukti 29 – 4 = 25 5 habis membagi 25. Jadi 29 4 (mod 5) – 6 – 14 = –20 4 habis membagi –20. Jadi –6 14 (mod 4)
Dari definisi 9.5 Jika a b (mod m), maka dapat ditulis dalam bentuk a = b + km k adalah sembarang bilangan bulat. Dari definisi 9.4 a mod m = r dapat ditulis dalam bentuk a r (mod m) Contoh 9.10 31 mod 4 = 3 dapat ditulis menjadi 31 3 (mod 4) –32 mod 7 = 3 dapat ditulis menjadi –32 3 (mod 4)
Teorema 9.4 Misal m adalah bilangan positif, Jika a b (mod m) dan c adalah sembarang bilangan bulat, maka: (i) (a + c ) (b + c) (mod m) (ii) ca bc (mod m) (iii) ap bp (mod m) untuk suatu bilangan bulat tak negatif p. 2. Jika a b (mod m) dan c d (mod m), maka: (i) (a + c ) (b + d) (mod m) (ii) ac bd (mod m)
Contoh 9.11 Misal 17 2 (mod 3) dan 10 4 (mod 3) , maka menurut teorema 9.4 17 + 5 2 + 5 (mod 3) 22 7 (mod 3) 17 . 5 5 . 2 (mod 3) 85 10 (mod 3) 17 + 10 2 + 4 (mod 3) 27 6 (mod 3) 17 . 10 2 . 4 (mod 3) 170 8 (mod 3)
Inversi Modulo Jika a dan m relatif prima dan b > 1, maka dapat ditentukan inversi dari a modulo m. Inversi dari a modulo m adalah bilangan bulat Sedemikian sehingga 1 (mod m) a aa Definisi 9.5 Misal a dan b adalah dua bilangan bulat dan m adalah bilangan > 0, maka dikatakan a b (mod m) jika m habis membagi a – b
Dari definisi 9.3 dinyatakan bahwa: Jika a dan m dua bilangan yang relatif prima, maka PBB (a, m) = 1, dan terdapat bilangan bulat p dan q sedemikian sehingga pa + qm = 1 Didapat pa + qm 1 (mod m) Karena qm 0 (mod m), maka pa 1 (mod m) p adalah inversi dari a modulo m.
Contoh 9. 12 Tentukan inversi dari: 4 (mod 9) ,17 (mod 7) , dan 18 (mod 10) Penyelesaian Karena PBB (4, 9) = 1, maka inversi 4 (mod 9) ada. Dari alogoritma Euclidean diperoleh bahwa 9 = 2 . 4 + 1 Susun persamaan diatas menjadi –2 . 4 + 1 . 9 = 1 Dari persamaan terakhir, didapat –2 adalah inversi dari 4 modulo 9. Hasil tersebut bisa diperiksa melalui: –2 . 4 1 (mod 9).
Perlu diketahui bahwa setiap bilangan yang dengan –2 modulo 9 juga adalah inversi dari 4, misalnya 7, –11, 16, dan seterusnya, karena 7 –2 (mod 9) –11 –2 (mod 9) 16 –2 (mod 9)
b) Karena PBB (17, 7) = 1, maka inversi dari 17 (mod 7) ada. Dari algoritma Euclidean diperoleh rangkaian pembagian berikut: 17 = 2 . 7 + 3 (i) 7 = 2 . 3 + 1 (ii) 3 = 3 . 1 + 0 (iii) Susun (ii) menjadi 1 = 7 – 2 . 3 (iv) Susun (i) menjadi 3 = 17 – 2 . 7 (v) Sulihkan (v) ke (iv) 1 = 7 – 2 (17 – 2. 7 ) = 5 . 7 – 2. 17 atau –2 . 17 + 5 . 7 = 1 Inversi dari 17 (mod 7)
Metode lain untuk menentukan inversi adalah dengan cara sebagai berikut. Dapat ditulis dalam bentuk Contoh 9. 13 Tentukan inversi dari: 4 (mod 9) ,17 (mod 7) , dan 18 (mod 10) Penyelesaian
Contoh 9. 12 Tentukan inversi dari: 4 (mod 9) 4 (mod 9) Untuk k = –1 k = –2 Untuk k = 3 k = 7 Untuk k = 7 k = 16
Latihan Tentukan inversi dari: 17 (mod 7) , dan 18 (mod 10)