Analisis data SMT 310 retnosubekti@uny.ac.id.

Slides:



Advertisements
Presentasi serupa
Developing Knowledge Management dalam perusahaan Week 10 – Pert 19 & 20 (Off Class Session)
Advertisements

Pengujian Hipotesis untuk Satu dan Dua Varians Populasi
Mata Kuliah : ALGORITMA dan STRUKTUR DATA 1.
PEMOGRAMAN BERBASIS JARINGAN
4 - 1 Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights reserved.
ESTIMASI PENJUALAN DATA TIME SERIES - DEKOMPOSISI 1. ADDITIVE MODEL 2. MULTIPLICATIVE MODEL.
TRIP GENERATION.
Materi Analisa Perancangan System.
Peta Kontrol (Untuk Data Variabel)
Statistika Nonparametrik PERTEMUAN KE-1 FITRI CATUR LESTARI, M. Si
PENGUKURAN INTEGRITAS
 N YU Stern Finance Professor, Edward Altman, developed the Altman Z-score formula in In 2012, he released an updated version called the Altman.
Tugas-Tugas.
Slide 3-1 Elmasri and Navathe, Fundamentals of Database Systems, Fourth Edition Revised by IB & SAM, Fasilkom UI, 2005 Exercises Apa saja komponen utama.
Distribusi Chi Kuadrat, t dan F
Prinsip Pembuatan Study Guide
Introduction to The Design & Analysis of Algorithms
MATERI 6 PERILAKU ORGANISASI
1 KOMPONEN PERUMUSAN PROGRAM KOMUNIKASI 1.Assesment - Focus the target audience 2.Planning - Target audience - Key of consumer benefit - Believe of the.
Artificial Intelligence
IT , Jaringan,Internet,E-commerce
PROSES PADA WINDOWS Pratikum SO. Introduksi Proses 1.Program yang sedang dalam keadaan dieksekusi. 2.Unit kerja terkecil yang secara individu memiliki.
1. Objek dalam kalimat aktif menjadi subjek dalam kalimat pasif
KIMIA ORGANIK II ELFI SUSANTI VH.
Review Operasi Matriks
Denny Gunawan Introduction Background Goals Problems Scope and Limitation.
Jeff Howbert Introduction to Machine Learning Winter Classification Nearest Neighbor.
Pengantar Metode Penarikan Contoh dan Sebaran Penarikan Contoh
Ekonomi Manajerial dalam Perekonomian Global
1-Sep-14 Analisis dan Perancangan Algoritma Kuliah 3 : Proof by induction E. Haodudin Nurkifli Teknik Informatika Universitas Ahmad Dahlan.
Menjelaskan sifat – sifat komponen elektronika aktif dan pasif
VALUING COMMON STOCKS Expected return : the percentage yield that an investor forecasts from a specific investment over a set period of time. Sometimes.
Implementing an REA Model in a Relational Database
Pertemuan 3 Menghitung: Nilai rata-rata (mean) Modus Median
Analysis of Variance (ANOVA)
Pendugaan Parameter part 2
METODE SAMPLING by Achmad Prasetyo, S.Si., M.M..
MEMORY Bhakti Yudho Suprapto,MT. berfungsi untuk memuat program dan juga sebagai tempat untuk menampung hasil proses bersifat volatile yang berarti bahwa.
3 nd Meeting Chemical Analysis Steps and issues STEPS IN CHEMICAL ANALYSIS 1. Sampling 2. Preparation 3. Testing/Measurement 4. Data analysis 2. Error.
Basisdata Pertanian. After completing this lesson, you should be able to do the following Identify the available group functions Describe the use of group.
STATISTIKA DESKRIPSI DAN INFERENSIA
1 Magister Teknik Perencanaan Universitas Tarumanagara General View On Graduate Program Urban & Real Estate Development (February 2009) Dr.-Ing. Jo Santoso.
LOGO Manajemen Data Berdasarkan Komputer dengan Sistem Database.
JARINGAN KOMPUTER DAHLAN ABDULLAH Web : FB Pribadi : Dahlan Abdullah FB MK : MK Jaringan Komputer.
Linked List dan Double Linked List
Amortization & Depresiasi
GROUP 4. MORTALITAS Ketua: Prof. Budi Utomo Anggota:
Probability Distribution
Metodologi Penelitian dalam Bidang Informatika
SMPN 2 DEMAK GRADE 7 SEMESTER 2
THE EFFICIENT MARKETS HYPOTHESIS AND CAPITAL ASSET PRICING MODEL
1. 2 Work is defined to be the product of the magnitude of the displacement times the component of the force parallel to the displacement W = F ║ d F.
MAINTENANCE AND REPAIR OF RADIO RECEIVER Competency : Repairing of Radio Receiver.
KONSEP DASAR PROBABILITAS
PENJUMLAHAN GAYA TUJUAN PEMBELAJARAN:
MEAN, MEDIAN, MODE.
Menu Standard Competence Based Competence.
Web Teknologi I (MKB511C) Minggu 12 Page 1 MINGGU 12 Web Teknologi I (MKB511C) Pokok Bahasan: – Text processing perl-compatible regular expression/PCRE.
Lecture 2 Introduction to C# - Object Oriented Sandy Ardianto & Erick Pranata © Sekolah Tinggi Teknik Surabaya 1.
ILMU PERILAKU KESEHATAN
Population and sample. Population is complete actual/theoretical collection of numerical values (scores) that are of interest to the researcher. Simbol.
Chapter 1 Mengapa Belajar Statistika?
SKALA NOIR : BAHAN AJAR STATISTIKA
Probabilitas & Statistika
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Pendugaan Parameter (II) Pertemuan 10
Author Author Author Author Ph.D.
Xiong, et al. A survey of core and support activities of communicable disease surveillance systems at operating-level CDCs in China. BMC Public Health.
A-level Fashion and Textiles Design and making Principles
Lecture 8 Normal model.
Transcript presentasi:

Analisis data SMT 310 retnosubekti@uny.ac.id

Motivasi Memahami analisis eksplorasi dan konfirmasi Landasan statistika deskriptif dan inferensi Bersinergi dengan komputasi statistik untuk meng- upgrade kemampuan analisis data

Deskripsi Penyusunan dan rangkuman data numerik Penyajian data univariat Transformasi data Sampel acak Statistika konfirmasi Analisis variansi Hubungan antara dua variabel Analisis data kategorik

Referensi Erickson, Bonnie H & Nosanchuk. 1987. Memahami Data : Statistika untuk Ilmu Sosial. (terjemahan RK. Sembiring & Manase Malo). Jakarta: LP3ES Griffiths D., Stirling W.D, Weldon K.L . 1998. Understanding Data : Principles and Practice of Statistics. Brisbane : John Willey & Sons

Kontrak Penilaian Bobot : Tugas : 20% Kuis : 15% Usip : 25% Uas : 40%

REVIEW STATISTIKA ? STATISTIK ? STATISTIKA DESKRIPTIF ? Statistika inferensi Populasi Sampel Parameter Statistik

Data Nilai ujian metode stastistik 20 orang mahasiswa adalah : Misalkan diketahui nilai ujian komputasi statistika 50 mahasiswa 91 50 73 74 55 86 70 43 47 80 40 85 64 61 58 95 52 67 83 92 44,7 59,8 67,1 57,1 58,2 69,5 60,6 44,2 76 51,2 48,4 63,9 67,8 56,2 60 68,2 48,5 46 72,6 52 42,5 57,2 70,2 57 62,2 70,3 50 76,8 74 65,1 49,1 64,7 74,6 63,6 63 72,2 75,3 75 55,4 67,7 43,1 76,5 68,7 59,9 63,5 77 73,5 56,3 77,3

Banyaknya penjualan HP di suatu toko : Merek HP Penjualan Nokia 56 SE 45 Samsung 32 LG 22 Lain

Skala pengukuran Nominal : Ordinal : Interval : Rasio : Contoh: Nominal: jenis pekerjaan, warna Ordinal: kepangkatan, tingkat pendidikan Interval: tahun kalender (Masehi, Hijriyah), temperatur (Celcius, Fahrenheit) Rasio: berat, panjang, isi

Statistika deskriptif Metode atau cara-cara yang digunakan untuk meringkas dan menyajikan data dalam bentuk tabel, grafik atau ringkasan numerik data.

Grafik Stem-and-leaf Untuk menunjukkan bentuk distribusi data Data berupa angka dengan minimal dua digit Contoh (Data penghasilan buruh): 4 3 9 5 1 1 5 5 5 6 8 9 6 0 2 3 3 4 4 4 5 5 5 6 7 7 7 8 8 9 7 1 2 2 3 4 4 5 5 8 8 3 4 9 9 2 Stem= 10, Leaf = 1

Intro… Why study statistics? Make decision without complete informations Understanding population, sample Parameter, statistic Descriptive and inferential statistics

glossary A population is the collection of all items of interest or under investigation N represents the population size A sample is an observed subset of the population n represents the sample size A parameter is a specific characteristic of a population Mean, Variance, Standard Deviation, Proportion, etc. A statistic is a specific characteristic of a sample

Population vs. Sample Population Sample a b c d ef gh i jk l m n o p q rs t u v w x y z b c g i n o r u y Values calculated using population data are called parameters Values computed from sample data are called statistics

Examples of Populations Incomes of all families living in yogyakarta All women with pregnancy problem. Grade point averages of all the students in your university …

Random sampling Simple random sampling is a procedure in which each member of the population is chosen strictly by chance, each member of the population is equally likely to be chosen, and every possible sample of n objects is equally likely to be chosen The resulting sample is called a random sample

Descriptive and Inferential Statistics Two branches of statistics: Descriptive statistics Collecting, summarizing, and processing data to transform data into information Inferential statistics Provide the bases for predictions, forecasts, and estimates that are used to transform information into knowledge and decision

Descriptive Statistics Collect data e.g., Survey Present data e.g., Tables and graphs Summarize data e.g., Sample mean =

Inferential Statistics Estimation e.g., Estimate the population mean weight using the sample mean weight Hypothesis testing e.g., Test the claim that the population mean weight is 120 pounds Inference is the process of drawing conclusions or making decisions about a population based on sample results

The Decision Making Process Knowledge Experience, Theory, Literature, Inferential Statistics, Computers Information Descriptive Statistics, Probability, Computers Begin Here: Identify the Problem Data