Peran Utama Data Mining

Slides:



Advertisements
Presentasi serupa
KNOWLEGDE DISCOVERY in DATABASE (KDD)
Advertisements

Kesimpulan BUKU Data Mining
Diadaptasi dari slide Jiawei Han
Data Mining: Proses Data Mining
Model Datamining Dr. Sri Kusumadewi, S.Si., MT. Materi Kuliah [10]:
Topik-Topik Lanjutan Sistem Informasi Johanes Kevin Lumadi Deny Setiawan Machliza Devi Sasmita Silvia Line Billie.
Data Mining: 2. Proses Data Mining
Ujian Akhir Semester (UAS)
BAYESIAN CLASSIFICATION
Algoritma-algoritma Estimasi
DATA MINING 1.
Algoritma Data Mining Object-Oriented Programming Algoritma Data Mining
Marselina Silvia Suhartinah / 4IA05
M ANAJEMEN D ATA “Pengaksesan Data”. P ENDAHULUAN Selama beberapa waktu, teknologi informasi berkonsentrasi pada pembangunan sistem bermisi kritis,- sistem.
Pertemuan X DATA MINING
Data Mining: Klasifikasi dan Prediksi Naive Bayesian & Bayesian Network . April 13, 2017.
Pengenalan Supervised dan Unsupervised Learning
Pertemuan 3 JARINGAN PERCEPTRON
Knowledge Management: 4. Systems
A rsitektur dan M odel D ata M ining. Arsitektur Data Mining.
DATA MINING (Machine Learning)
Course Outline 1. Pengantar Data Mining 2. Proses Data Mining
Data mining ABU SALAM, M.KOM.
DATA MINING 25 Januari 2008.
Sistem Berbasis Fuzzy Materi 4
2. Data & Proses Datamining
Data Mining Junta Zeniarja, M.Kom, M.CS
Peran Utama Data Mining
Data Mining Junta Zeniarja, M.Kom, M.CS
Data Mining.
Assocation Rule Data Mining.
Disiplin Ilmu, Metode Penelitian, Computing Method
4. Disiplin Ilmu, Metode Penelitian dan Computing Methods
Data Mining.
Konsep Data Mining Ana Kurniawati.
Data Mining Yohana Nugraheni, S.Kom, MT
Clustering Best Practice
Disiplin Ilmu, Metode Penelitian, Computing Method
Learning Theory Artificial Intelligence Teknik Informatika – UNIKOM
Business Intelligent Ramos Somya, S.Kom., M.Cs.
.: ALGORITMA APRIORI :. DSS - Wiji Setiyaningsih, M.Kom
Road Map Penelitian Data Mining
Artificial Intelligence (AI)
KELOMPOK 6 Nama Kelompok: Lulus Irmawati ( )
Classification Supervised learning.
MATERI PERKULIAHAN KECERDASAN BUATAN
Oleh : Rahmat Robi Waliyansyah, M.Kom.
Analisis Klastering K-Means Model Datamining Kelompok 1 Eko Suryana
PRODI MIK | FAKULTAS ILMU-ILMU KESEHATAN
Self-Organizing Network Model (SOM) Pertemuan 10
DATA MINING with W E K A.
KLASIFIKASI.
Object-Oriented Programming Data Mining Romi Satria Wahono
Anggota Dwita Eprila ( ) Mayang Hermeiliza Eka Putri ( ) Nadiah Amelia ( ) Rafif Abdusalam ( ) Shofyan.
Data Mining: Klasifikasi dan Prediksi Naive Bayesian & Bayesian Network . November 8, 2018.
Konsep Aplikasi Data Mining
Konsep Aplikasi Data Mining
Arsitektur dan Model Data Mining
Pengetahuan Data Mining
Pertemuan 1 & 2 Pengantar Data Mining 12/6/2018.
Machine Learning Introduction
KLASIFIKASI.
K-MEANS ALGORITHM CLUSTERING
Konsep Data Mining Ana Kurniawati.
ASSOCIATION RULE DAN PENERAPANNYA
DECISION SUPPORT SYSTEM [MKB3493]
DATA MINING 01 Introduction
Konsep Aplikasi Data Mining
Universitas Gunadarma
Universitas Gunadarma
Transcript presentasi:

Peran Utama Data Mining romi@romisatriawahono.net Object-Oriented Programming Peran Utama Data Mining http://romisatriawahono.net

Peran Utama Data Mining romi@romisatriawahono.net Object-Oriented Programming Peran Utama Data Mining Estimation Prediction Classification Clustering Association Estimation Prediction Classification Clustering Association http://romisatriawahono.net

Dataset with Attribute and Class Class/Label

Estimasi Waktu Pengiriman Pizza Customer Jumlah Pesanan (P) Jumlah Bangjo (B) Jarak (J) Waktu Tempuh (T) 1 3 16 2 7 4 20 6 18 8 36 ... 1000 12 Waktu Tempuh (T) = 0.48P + 0.23B + 0.5J

Penentuan Kelulusan Mahasiswa NIM Gender Nilai UN Asal Sekolah IPS1 IPS2 IPS3 IPS 4 ... Lulus Tepat Waktu 10001 L 28 SMAN 2 3.3 3.6 2.89 2.9 Ya 10002 P 27 SMA DK 4.0 3.2 3.8 3.7 Tidak 10003 24 SMAN 1 2.7 3.4 3.5 10004 26.4 SMAN 3 11000 23.4 SMAN 5 2.8 3.1

Klastering Bunga Iris

Klastering Bunga Iris

Algoritma Data Mining (DM) romi@romisatriawahono.net Object-Oriented Programming Algoritma Data Mining (DM) Estimation (Estimasi): Linear Regression, Neural Network, Support Vector Machine, etc Prediction/Forecasting (Prediksi/Peramalan): Classification (Klasifikasi): Naive Bayes, K-Nearest Neighbor, C4.5, ID3, CART, Linear Discriminant Analysis, etc Clustering (Klastering): K-Means, K-Medoids, Self-Organizing Map (SOM), Fuzzy C-Means, etc Association (Asosiasi): FP-Growth, A Priori, etc http://romisatriawahono.net

Metode Learning Pada Algoritma DM romi@romisatriawahono.net Object-Oriented Programming Metode Learning Pada Algoritma DM Supervised Learning Association Learning Unsupervised Learning http://romisatriawahono.net

Dataset with Attribute and Class Class/Label

Metode Learning Pada Algoritma DM romi@romisatriawahono.net Object-Oriented Programming Metode Learning Pada Algoritma DM Unsupervised Learning (Pembelajaran tanpa Guru): Algoritma data mining mencari pola dari semua variable (atribut) Variable (atribut) yang menjadi target/label/class tidak ditentukan (tidak ada) Algoritma clustering adalah algoritma unsupervised learning http://romisatriawahono.net

Dataset with Attribute (No Class)

Metode Learning Pada Algoritma DM romi@romisatriawahono.net Object-Oriented Programming Metode Learning Pada Algoritma DM Association Learning (Pembelajaran untuk Asosiasi Atribut) Proses learning pada algoritma asosiasi (association rule) agak berbeda karena tujuannya adalah untuk mencari atribut yang muncul bersamaan dalam satu transaksi Algoritma asosiasi biasanya untuk analisa transaksi belanja, dengan konsep utama adalah mencari “produk/item mana yang dibeli bersamaan” Pada pusat perbelanjaan banyak produk yang dijual, sehingga pencarian seluruh asosiasi produk memakan cost tinggi, karena sifatnya yang kombinatorial Algoritma association rule seperti a priori algorithm, dapat memecahkan masalah ini dengan efisien http://romisatriawahono.net

Dataset Transaction

Association Rules

Proses Utama pada Data Mining romi@romisatriawahono.net Object-Oriented Programming Proses Utama pada Data Mining Input (Data) Metode (Algoritma Data Mining) Output (Pola/Model) http://romisatriawahono.net

Output/Pola/Model/Knowledge Formula/Function (Rumus atau Fungsi Regresi) WAKTU TEMPUH = 0.48 + 0.6 JARAK + 0.34 LAMPU + 0.2 PESANAN Decision Tree (Pohon Keputusan) Rule (Aturan) IF ips3=2.8 THEN lulustepatwaktu Cluster (Klaster)

Input – Metode – Output – Evaluation romi@romisatriawahono.net Object-Oriented Programming Input – Metode – Output – Evaluation Input (Data) Metode (Algoritma Data Mining) Output (Pola/Model) Evaluation (Akurasi, AUC, RMSE, etc) http://romisatriawahono.net

Cognitive-Performance Test Sebutkan 5 peran utama data mining! Jelaskan perbedaan estimasi dan prediksi! Jelaskan perbedaan estimasi dan klasifikasi! Jelaskan perbedaan klasifikasi dan klastering! Jelaskan perbedaan klastering dan prediksi! Jelaskan perbedaan supervised dan unsupervised learning! Sebutkan tahapan utama proses data mining!