GAS NYATA/RIIL Isoterm Gas Nyata
Isoterm Gas Nyata Jika hubungan tekanan-volume untuk gas nyata diukur pada berbagai temperatur, maka akan diperoleh grafik 3.5 Pada temperatur tinggi, isoterm amat mirip dengan gas ideal, sedangkan pada temperatur rendah menunjukkan hal yang berbeda Adanya daerah datar/horisontal pada temperatur rendah memerlukan perhatian lebih
Isoterm Gas Nyata
Isoterm Gas Ideal
Bayangkan salah satu sisi kontainer dapat digerakkan (piston), jika temperatur dijaga pada T1 kemudian sisi digerakkan hingga menurunkan volume Saat volume mengecil, tekanan gas akan meningkat hingga pada volume V2 Penurunan volume setelah V2 tidak akan menghasilkan kenaikan temperatur hingga volume V3 tercapai Sedikit saja penurunan volume dari V3 ke V4 akan menghasilkan kenaikan drastis tekanan dari pe ke p'
T1, V1 : kemudian volume diperkecil pada suhu tetap (T1) T1, V1 (gas) T1, V1 : kemudian volume diperkecil pada suhu tetap (T1)
Saat volume diperkecil hingga mencapai V2 tekanan akan meningkat gas Saat volume diperkecil hingga mencapai V2 tekanan akan meningkat
T1, V3, Pe tetap kondensasi Penurunan volume lebih lanjut V2 V3 tidak menyebabkan peningkatan tekanan
Temperatur Kritis Garis mendatar yang dijumpai pada isoterm gas nyata temperatur rendah semakin menyempit pada temperatur tinggi Pada temperatur tertentu, daerah datar mengerucut membentuk satu belokan di titik yang disebut sebagai temperatur kritis Diatas temperatur kritis, gas nyata menunjukkan pola isoterm yang sama dengan gas ideal
Keadaan Kontinyu Pada gambar 3.6 berikut adalah modifikasi gb 3.5 namun dengan daerah datar yang dihubungkan dengan garis putus2 Titik A pada gb tsb mewakili fasa liquid sedangkan titik C merepresentasikan fasa gas Titik-titik dibawah kubah yang dibentuk oleh garis putus2 mewakili sistem dimana liquid dan vapor berada dalam kesetimbangan Selalu dimungkinkan bagi kita membedakan sistem dimana terdiri dari satu fasa dengan sistem terdiri dari 2 fasa dalam kesetimbangan Namun kita tidak akan menemukan garis pembatas antara fasa liquid dan gas, fakta ini yang dikenal sebagai prinsip keadaan kontinyu
Daerah 2 Fasa dan Keadaan Kontinyu
Mula2 pada C temperatur dinaikkan dengan V konstan hingga tekanan akan meningkat sejalan dengan garis CD Di titik D tekanan dijaga konstan namun gas didinginkan (temperatur turun) sehingga volume akan menurun DE Di titik E, volume dibuat konstan dan gas didinginkan sehingga tekanan akan menurun ke titik A Pada proses diatas, gas tidak melalui daerah 2 fasa, kondensasi dalam terminologi umum tidak terjadi sehingga titik A tidak terkategori fasa liquid namun keadaan gas terkompresi Dalam kaitan ini, perbedaan antara fasa liquid dan gas menjadi tidak jelas dan tergantung pada sudut pandang yang digunakan
Isoterm Persamaan Gas Van der Waals Saat volume molar sangat besar, persamaan diatas akan sama dengan gas ideal karena V-b V dan a/V2 menjadi sangat kecil Hal ini dapat dilihat pada grafik isoterm gas Van der Waals (3.7) pada daerah volume sangat besar, isoterm menjadi ideal seperti halnya pada temperatur tinggi
Isoterm Gas Van der Waals
Pada temperatur rendah dan volume kecil, suku2 di persamaan van der waals tidak dapat diabaikan, namun hasilnya terlihat beda dengan adanya lembah maksimum dan minimum Pada temperatur Tc isoterm memperlihatkan titik belok/perubahan di E Jika isoterm ini dibandingkan dengan gas nyata, nampak pada Tc pada 3.7 merepresentasikan temperatur kritis di gas nyata Kurva pada T2 di isoterm van der waals memprediksi ada 3 volume pada tekanan pe sementara pada gas nyata di pe menunjukkan volume yang sangat banyak (infinite) Harus disadari bahwa dengan persamaan yang sangat rumit sekalipun akan sulit untuk memunculkan daerah datar seperti pada isoterm gas nyata
Perbandingan Gas Nyata dan Van der Waals
Gas Supercooled `Daerah AB dan DC pada isoterm van der waals dapat ditelusuri secara eksperimen Jika volume gas pada T2 diturunkan secara perlahan tekanan akan naik hingga ke D dimana tekanan pe tercapai. Dititik ini seharusnya mulai terjadi kondensasi namun dimungkinkan kondensasi tidak terjadi sehingga penurunan volume lebih lanjut hanya meningkatkan tekanan dari D ke C Di daerah DC ini tekanan gas melampaui tekanan kesetimbangan uap liquid pe pada T2, titik2 didaerah ini disebut keadaan uap superjenuh atau supercooled
Liquid Superheated Begitupun dari titik A jika volume dinaikkan pada T2 hingga tekanan turun dan mencapai pe, pada titik ini uap seharusnya terbentuk Namun dimungkinkan saat volume dinaikkan, tekanan terus turun dari A ke B dan pada titik ini terbentuk liquid dibawah tekanan kesetimbangan uap cairnya dan disebut liquid superheated Kedua keadaan ini adalah keadaan metastabil dan bersifat tidak stabil, sedikit gangguan saja akan mengubah sistem ke keadaan kesetimbangan uap-cair
Keadaan Kritis Jika persamaan van der waals dimodifikasi menjadi persamaan kubus (pangkat 3) maka akan diperoleh Persamaan ini memiliki 3 akar penyelesaian untuk T2 dan pe dan ditunjukkan pada isoterm van der waals sebagai titik potong di pe Pada gambar 3.6 dan 3.7. telah ditunjukkan pada ada temperatur maksimum Tc dan tekanan maksimum pc dimana liquid dan vapor eksis bersamaan Kondisi pada temperatur dan tekanan ini dinamakan titik kritis dan volumenya dinamakan volume kritis
Konklusi persamaan van der waals Nilai-nilai a dan b dapat dihitung berdasarkan data pc dan Tc, namun untuk Vc jika dibandingkan dengan nilai terukur hasilnya sangat jelek Ini terjadi karena persamaan van der waals sangat tidak akurat didekat daerah kritis Sehingga dengan fakta ini dan juga fakta bahwa konstanta (hampir) selalu dihitung dari data keadaan kritis menyiratkan persamaan van der waals tidak dapat menghitung dengan akurat sifat-sifat gas – walaupun memperbaiki gas ideal
Persamaan Keadaan lainnya Persamaan van der waals hanyalah salah satu dari beberapa persamaan yang diajukan selama bertahun-tahun untuk mengobservasi data pVT gas Beberapa persamaan ini di list pada tabel berikut Dari persamaan ini, persamaan Beattie-Bridgeman atau disebut juga persamaan virial paling cocok untuk kerja yang memerlukan akurasi Persamaan Beattie-Bridgeman memiliki 5 konstanta selain R yaitu A0, a, B0, b dan c