Logika Matematika Matematika SMK Kelas/Semester: II/2

Slides:



Advertisements
Presentasi serupa
GEOMETRI BIDANG Sumarno A
Advertisements

UKK MATEMATIKA KELAS X SMT 2
UJI KOMPETENSI LOGIKA MATEMATIKA.
BAB 1. LOGIKA MATEMATIK 1.1 PROPOSISI Definisi: [Proposisi]
LOGIKA MATEMATIKA Oleh BUDIHARTI, S.Si..
LOGIKA MATEMATIKA PROGRAM STUDI TEKNIK INFORMATIKA
Logika.
Oleh : LUFVIANA LIKKU TRIMINTARUM A
LOGIKA MATEMATIKA.
Materi ini dapat diunduh di LOGIKA MATEMATIKA By GISOESILO ABUDI Materi ini dapat diunduh di
LOGIKA MATEMATIKA Pertemuan III.
LOGIKA INFORMATIKA VALIDITAS PEMBUKTIAN.
Negasi dari Konvers, Invers, dan Kontraposisi
LOGIKA MATEMATIKA SMA Kristen 7 Penabur Jakarta
LOGIKA LOGIKA LOGIKA.
LOGIKA MATEMATIKA Mata Pelajaran: Matematika Kelas : X Semester : 2.
TOPIK 1 LOGIKA.
LOGIKA MATEMATIKA PERTEMUAN 5 KALKULUS PROPOSISI
Logika Matematika Matematika SMK Kelas/Semester: II/2
SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN STKIP YPM BANGKO 2014
Bahan Ajar MATEMATIKA “Bersungguh-sungguhlah dlm mencari ilmu”
Materi ini dapat diunduh di LOGIKA MATEMATIKA By GISOESILO ABUDI Materi ini dapat diunduh di
LOGIKA MATEMATIKA BAGIAN 2: ARGUMEN.
BAB 4 Logika Matematika Standar Kompetensi: Kompetensi Dasar:
I.C.T DALAM PEMBELAJARAN MATEMATIKA H O M E I.C.T DALAM PEMBELAJARAN MATEMATIKA MOTIVASI & APERSEPSI SK KD INDIKATOR PROFIL PENULIS MATERI EVALUASI.
VALIDITAS PEMBUKTIAN TATAP MUKA 6 Prodi PGSD FKIP UPM.
BAB 1. LOGIKA MATEMATIK 1.1 PROPOSISI Definisi: [Proposisi]
Oleh : Siardizal, S.Pd., M.Kom
Pertemuan ke 1.
MATEMATIKA DASAR LOGIKA MATEMATIKA
LOGIKA MATEMATIKA.
Kalimat berkuantor (logika matematika)
LOGIKA Logika mempelajari hubungan antar pernyataan-pernyataan yang berupa kalimat-kalimat atau rumus-rumus, sehingga dapat menentukan apakah suatu pernyataan.
Matematika Diskrit Bab 1-logika.
PENALARAN MATEMATIKA OLEH KELOMPOK 1 Nama:
ZULFA ROHMATUL MUBAROKAH ( /4A)
Sabtu, 27 Januari 2018 Kalimat Matematika Oleh : Choirudin, M.Pd.
LOGIKA MATEMATIKA.
PROPOSITION AND NOT PROPOSITION
PENALARAN DALAM GEOMETRI
LOGIKA MATEMATIKA.
Materi ini dapat diunduh di LOGIKA MATEMATIKA By GISOESILO ABUDI Materi ini dapat diunduh di
DASAR-DASAR MATEMATIKA DAN SAINS
LOGIKA MATEMATIKA.
IMPLIKASI (Proposisi Bersyarat)
LOGIKA MATEMATIKA Disusun oleh : Risti Istiyani A
Materi ini dapat diunduh di LOGIKA MATEMATIKA By GISOESILO ABUDI Materi ini dapat diunduh di
Oleh : PURWANTO,S.Pd.,MM. SMK MA’ARIF SEMANU 2017
Matakuliah Pengantar Matematika
Matematika Diskrit TIF (4 sks) 3/9/2016.
LOGIKA MATEMATIKA Pertemuan II.
NEGASI PERNYATAAN MAJEMUK
LOGIKA MATEMATIKA Penerbit erlangga.
logika matematika Standar Kompetensi:
LOGIKA MATEMATIKA (Pernyataan Majemuk)
Logika dan Logika Matematika
Dasar dasar Matematika
SPB 1.6 VALIDITAS PEMBUKTIAN SPB 1.7 PEMBUKTIAN TIDAK LANGSUNG
VALIDITAS PEMBUKTIAN – Bagian I
LOGIKA LOGIKA MAJEMUK KUANTOR
LOGIKA MATEMATIKA Pertemuan I Apaan tuh?.
LOGIKA MATEMATIKA Disusun Oleh : 2.Emi Suryani ( ) 5A4
Materi ini dapat diunduh di LOGIKA MATEMATIKA By GISOESILO ABUDI Materi ini dapat diunduh di
1.1 Proposisi & Proposisi Majemuk
LOGIKA MATEMATIKA 9/12/2018.
07 Logika Matematika Penarikan Kesimpulan
LOGIKA MATEMATIKA OLEH LASMI, S.S.I, M.PD.
Contoh 1 Kalimat (p → q) → r bernilai benar Jika
LOGIKA MATEMATIKA.
BAB I DASAR-DASAR LOGIKA
Transcript presentasi:

Logika Matematika Matematika SMK Kelas/Semester: II/2 Persiapan Ujian Nasional

I. Logika Matematika 1. Pernyataan : Pernyataan adalah kalimat yang hanya benar atau salah, tetapi tidak sekaligus benar dan salah. Pernyataan disebut kalimat tertutup. Benar atau salah suatu nilai pernyataan apakah sesuai atau tidak dengan kenyataan.

Contoh Penjelasan : 1. 5 adalah bilangan prima 2. 14 kelipatan 5 3. Siapakah yang tidak mengerjakan PR ? Penjelasan : Kalimat 1 adalah pernyataan yang bernilai benar Kalimat 2 adalah pernyataan yang bernilai salah Kalimat 3 adalah bukan pernyataan karena tidak dapat ditentukan nilai kebenarannya.

Pernyataan dilambangkan dengan huruf : p, q, r , dst. Nilai kebenaran diberi lambang B (benar) dan S (salah) Misalnya : p : Ahmad belajar supaya puntar (B)

2. Ingkaran atau Negasi. Misalnya : Dilambangkan dengan “  “ atau “ “ (strip di atas), dibaca : bukan/tidak Misalnya : 1. p : 2 + 5 = 7, maka negasi dari p p : 2 + 5  7 atau, Tidak benar bahwa 2 + 5 = 7 2. q : Semua pelajar berbaju putih q : Tidak semua pelajar berbaju putih, atau q : Beberapa pelajar tidak berbaju putih, atau q : Ada pelajar yang tidak berbaju putih

Perhatikan table kebenaran berikut :

3. Konvers, invers dan kontra posisi Dari pernyataan majemuk Implikasi p  q dapat dibuat pernyataan lain, yaitu : 1). q  p disebut pernyataan konvers dari p  q 2).  p  q disebut pernyataan invers 3).  q  p disebut pernyataan kontra posisi dari p  q

Tabel Kebenaran :

Contoh p  q : Jika ABCD bujur sangkar maka semua sisinya sama panjang q  p : Jika semua sisinya sama panjang maka ABCD bujur sangkar p  q : Jika tidak benar ABCD bujur sangkar maka tidak benar semua sisinya sama panjang q  p : Jika tidak benar semua sisinya sama panjang maka ABCD bujur sangkar

II. Penarikan Kesimpulan Aturan Dasar Penarikan kesimpulan Untuk dapat menarik kesimpulan diperlukan pernyataan-pernyataan tertentu yang diterima kebenarannya. Pernyataan-pernyataan tertentu itu disebut premis. Kesimpulan yang diambil disebut konklusi. Kumpulan dari satu atau lebih premis disebut argumen

Konklusi sebaiknya diturunkan dari premis-premis, kalau premis yang digunakan benar, maka konklusi akan bernilai benar, dengan bantuan table kebenaran kita dapat menunjukkan keabsahan argumen.

Contoh: Tunjukan dengan table kebenaran ! Premis 1 : p  q Premis 2 : p Konklusi : q Jawab : Akan ditunjukkan : {(p  q)  p}  q benar

2. Prinsip-prinsip Penarikan Kesimpulan Untuk membuktikan suatu konklusi dari kebenaran yang diketahui, senggunakan pola yang didasarkan atas prinsip-prinsip : a. Modus Ponens. Premis 1 : p  q Premis 2 : p Konklusi : q Dibaca : Jika diketahui p  q benar dan p benar , maka disimpulkan q benar

Contoh Premis 1 : Jika 2 + 3 = 5, maka 5 > 4 (benar) Premis 2 : 2 + 3 = 5 ( benar ) Konklusi : 5 > 4 (benar)

b. Moduls Tolens. Premis 1 : p  q Premis 2 : q Konklusi : p Dibaca : Jika diketahui p  q benar dan q benar , maka disimpulkan p benar

Contoh Premis 1 : Jika hari hujan, maka cuaca dingin (benar) Premis 2 : Cuaca tidak dingin (benar) Konklusi : Hari tidak hujan (benar)

3. Prinsip Silogisma. Premis 1 : p  q Premis 2 : q  r Konklusi : p  r Dibaca: Jika diketahui p  q benar dan q  r benar, maka disimpulkan p  r benar

Contoh: Premis 1 : Jika kamu siswa SMK maka melaksanakan PSG (benar) Premis 2 : Jika kamu melaksanakan PSG maka belajar di Pabrik (benar) Konklusi : Jika kamu siswa SMK maka belajar di Pabrik (benar)

Latihan 1. Jika : p : Tuti gadis cantik q : Tuti gadis pandai Tuliskan dengan kata-kata pernyataan- pernyataan di bawah ini : a. q d. p  q b. p  q e. p  q c. p  q 2. Tentukan nilai kebenaran dari pernyataan di bawah ini : a. Tidak benar 2 + 7  9 b. 30 atau 40 habis dibagi 6 c. Jika Jakarta Ibukota Indonesia maka Jakarta di Pulau Bali

Latihan 3. Tentukan konvers, invers dan kontra posisi dari pernyataan-pernyataan berikut : a. Jika segitiga sebangun maka segitiga sudut- sudut seletak sama b. Jika 45 adalah kelipatan 5 maka 5 dapat dibagi 2 c. Jika tg  = 450 maka sudut segitiga siku- siku adalah 450 4. Buatlah table kebenaran dari : a. (p  q) b. (p  q) c. p  (q  p) d. (p  q)  (p  q)

Latihan 5. Selidiki penarikan kesimpulan dibawah ini, apakah modus Ponens, Tolens atau Silogisma : a. Jika Ibu pergi maka adik menangis Adik tidak menangis Ibu tidak jadi pergi b. Jika log 10 = 1 maka 2log 8 = 3 log 10 = 1 2log 8 = 3 c. Jika flow Chart untuk membuat program maka komputer alat serbaguna Jika komputer alat serbaguna maka harganya mahal Jika flow chart untuk membuat program maka harganya mahal