UJI PERBEDAAN (Differences analysis)

Slides:



Advertisements
Presentasi serupa
TURUNAN/ DIFERENSIAL.
Advertisements

ANALISA BIVARIAT: KORELASI DAN REGRESI
Analisis varians.
TIPE DATA DAN PEMILIHAN ANALISIS STATISTIK
UJI t INDEPENDEN.
Korelasi dan Regresi Ganda
Analisis Variansi.
Uji Non Parametrik Dua Sampel Independen
ANALISIS DATA Dr. Adi Setiawan.
Modul 7 : Uji Hipotesis.
Uji Lebih Dari 2 Sampel Tidak Berpasangan Bag 5b (Uji Krusskal Wallis)
BAB 13 PENGUJIAN HIPOTESA.
MK. PENGELOLAAN DATA MUTU PANGAN
10 Uji Hipotesis untuk Dua Sampel.
STATISTIKA NON PARAMETRIK
ANOVA DUA ARAH.
UJI HOMOGENITAS DATA SATU VARIABEL UJI T DAN ANOVA
STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPEL GANDA)
METODOLOGI PENELITIAN SESI 11 STATISTIK INFERENSI: PARAMETRIK TEST.
ANOVA DUA ARAH.
Luas Daerah ( Integral ).
TINJAUAN UMUM DATA DAN STATISTIKA
Analisis Perbandingan
Ekonometrika Metode-metode statistik yang telah disesuaikan untuk masalah-maslah ekonomi. Kombinasi antara teori ekonomi dan statistik ekonomi.
STATISTIK DESKRIPTIF ONE SAMPLE INDEPENDENT SAMPLE PAIRED SAMPLE
PENGUJIAN HIPOTESA Probo Hardini stapro.
PENGUJIAN HIPOTESIS Mugi Wahidin, M.Epid Prodi Kesehatan masyarakat
HIPOTESIS & UJI PROPORSI
STATISTIK NONPARAMETRIK Kuliah 4: Uji Chi Squares untuk Dua Sampel independen dan Uji Tanda Dosen: Dr. Hamonangan Ritonga, MSc Sekolah Tinggi.
PENGUJIAN HIPOTESIS RATA-RATA (MEAN) 1 SAMPEL
PERTEMUAN 7 PENGUJIAN HIPOTESIS
Oleh: Andri Wijaya, S.Pd., S.Psi., M.T.I.
HIPOTESIS DAN UJI RATA-RATA
HIPOTESIS & UJI VARIANS
STATISTIKA INFERENSIA
PENGUJIAN HIPOTESIS SAMPEL BESAR
ANOVA (Analysis of Variance)
STATISTIKA INFERENSIA
PENGUJIAN HIPOTESIS SAMPEL BESAR
ANALISIS KORELASI DAN REGRESI LINIER
STATISTIK NON PARAMETRIK
Analisis Varians.
STATISTIKA 1 Jurusan Ekonomi Syariah IAIN Antasari Banjarmasin Disampaikan oleh Hafiez Sofyani, SE., M.Sc. Pertemuan 8: ANALYSIS OF VARIANCE (ANOVA) KEGUNAAN.
ANALISIS COMPARE MEANS
COMPARE MEAN.
2. Independent-Sample T Test
oleh: Hutomo Atman Maulana, S.Pd. M.Si
STATISTIK INFERENSIAL
STATISTIK INFERENSIAL
created by Vilda Ana Veria Setyawati
ANOVA (Analysis of Variance)
STATISTIK INFERENSIAL
PAIRED SAMPLE T-test Utk menguji apakah 2 sampel yg berhubungan atau berpasangan berasal dari populasi yg mempunyai means sama. Langkah-langkah analisis.
STATISTIK BISNIS Pertemuan 10-11: Pengujian Hipotesis Dua Sampel dan ANOVA (SPSS) Dosen Pengampu MK: Evellin Lusiana, S.Si, M.Si.
Uji Hipotesis dengan SPSS
STATISTIK II Pertemuan 9: Pengujian Hipotesis Dua Sampel dan ANOVA (SPSS) Dosen Pengampu MK: Evellin Lusiana, S.Si, M.Si.
KRUSKAL-WALLIS.
ANOVA ANALYSIS OF VARIANCE.
STATISTIK II Pertemuan 9: Pengujian Hipotesis Dua Sampel dan ANOVA (SPSS) Dosen Pengampu MK: Evellin Lusiana, S.Si, M.Si.
TEMU 11 COMPARE MEANS: MEANS.
X bebas/ mempengaruhi / independent Y Terikat/ dipengaruhi / dependent
Statistika Uji hipotesis 1 Populasi & 2 Populasi
UJI HIPOTESIS ANALISIS BIVARIAT.
TEMU 11 COMPARE MEANS: MEANS.
STATISTIK BISNIS Pertemuan 10-11: Pengujian Hipotesis Dua Sampel dan ANOVA (SPSS) Dosen Pengampu MK: Evellin Lusiana, S.Si, M.Si.
Pengujian Hipotesis 9/15/2018.
Pengantar Aplikasi Komputer II Analisis Regresi Linier Sederhana
PENGUJIAN HIPOTESIS Ahsan Sumantika, S.E., M.Sc.
STATISTIK II Pertemuan 9: Pengujian Hipotesis Dua Sampel dan ANOVA (SPSS) Dosen Pengampu MK: Evellin Lusiana, S.Si, M.Si.
Uji Perbandingan Rata-Rata (Uji t)
Transcript presentasi:

UJI PERBEDAAN (Differences analysis)

One Sample vs. Two Samples Dalam analisis data, peneliti dapat dihadapkan pada analisis atas one sample atau two/more samples. Jumlah sampel, one sample atau two samples ditentukan berdasarkan “bagaimana data diperlakukan”, bukan pada “bagaimana data dikumpulkan”!

One Sample vs. Two Samples Two samples dibedakan menjadi 2 yaitu: 1. Two-related (paired) samples, 2. Two-independent samples,

Menguji Hipotesis H0 : Hipotesa Awal Ha : Hipotesa Alternatif Bila pvalue > nilai signifikan, berarti pvalue tidak signifikan, berarti terima H0 dan tolak Ha. Atau, hipotesis tidak terbukti atau tidak dapat diterima. Bila pvalue ≤ nilai signifikan, berarti pvalue signifikan, berarti tolak H0 dan terima Ha. Atau, hipotesis terbukti atau dapat diterima.

Menguji Hipotesis Besarnya nilai signifikansi (nilai alpha ) tergantung peneliti, yakni tergantung dari level of confidence peneliti. Bila level of confidence = 95%, maka = 0.05 (5%), yaitu nilai signifikansi sebesar 5%.

One sample – Metric Data Misalkan ingin dibuktikan hipotesis Rata-rata (mean) persepsi responden terhadap kualitas menyeluruh produk merek toko kategori makanan-minuman adalah di atas 4.0. Dengan tingkat signifikansi =0.05, maka hipotesis statistiknya dapat dirumuskan sbb:

One sample – Metric Data H0: < 4.0 > 4.0 Ha: Karena variabel “persepsi terhadap kualitas produk” diukur dengan skala interval (metric), maka teknik statistik yang digunakan adalah ONE SAMPLE t-Test.

One sample – Metric Data ONE SAMPLE t-Test: Dalam SPSS, langkah2nya sbb: ANALYZE > COMPARE MEANS > ONE SAMPLE t-TEST > Kemudian pilih variabel yang akan diuji nilai mean-nya.

Two-Independent Samples Misal: Responden Pria dan Wanita. Pengujian perbedaan, responden pria dan wanita tersebut diperlakukan sebagai 2 sampel yang berbeda/independent (seorang responden yg berjenis kelamin Pria, maka ia adalah anggota kelompok sampel Pria; tidak mungkin ia pada saat yg bersamaan, masuk ke kelompok sampel Wanita  sehingga teknik pengujian yang digunakan adalah two-independent samples.

Two Independent Samples Contoh: Apakah persepsi responden pria berbeda signifikan dengan persepsi responden wanita dalam menilai kualitas menyeluruh dari produk merek toko kategori makanan-minuman. Karena persepsi diukur dengan skala interval, maka teknik statistik yang digunakan adalah t-Test Two-Independent Samples.

Two Independent Samples Dengan tingkat signifikansi = 0.05, maka hipotesis statistiknya dirumuskan sbb:

Two Related (Paired) Samples Sampel Berpasangan Two-related samples (paired samples) adalah apabila kepada sekelompok sampel dilakukan pengukuran sebanyak 2 kali untuk hal yang berbeda, atau untuk hasil suatu treatment (Uji sebelum dan sesudah treatment).

Two Related (Paired) Samples – Sampel Berpasangan Contoh: Akan diuji apakah persepsi responden dalam menilai kualitas produk kategori makanan- minuman berbeda signifikan dibandingkan dengan kategori non makanan-minuman. Kelompok responden mengalami pengukuran 2x, maka diperlakukan 2 sampel berpasangan  teknik pengujian yang digunakan adalah two-related/paired samples

Two Paired samples – Metric Data Dengan tingkat signifikansi = 0.05, hipotesis statistik-nya dirumuskan sbb:

Two Paired samples – Metric Data Variabel ke-1 “persepsi kualitas produk Ma-Min” Variabel ke-2 “persepsi kualitas produk Non Ma-Min” Untuk menguji perbedaan ke-2 sampel digunakan TWO SAMPLES / PAIRED t-Test. Dalam SPSS, langkah2nya sbb: ANALYZE > COMPARE MEANS > PAIRED SAMPLES t-TEST > Kemudian pilih variabel-variabel yang akan diuji nilai mean-nya.

Chi Square Analysis Variabel-variabel yang diuji dengan teknik Chi-square ( ) harus diukur dengan skala nominal atau ordinal (non-metric data). Untuk menggunakan chi-square, maka harus dibuat tabulasi silang (cross-tabulation) terlebih dahulu.

Chi-square Test Contoh: Peneliti ingin menguji apakah gender responden berasosiasi/berhubungan dengan toko dimana responden membeli produk. “Gender” sebagai variabel ke-1, dan “nama toko” sebagai variabel ke-2, merupakan data berskala nominal (data non-metric), teknik statistik yang dipakai untuk menguji asosiasi atau hubungan antara gender dan toko yang dipilih adalah Chi-Square.

Chi-square Test Dalam SPSS, Chi Square dioperasikan melalui: ANALYZE > DESCRIPTIVE STATISTIC > CROSSTABS. Dalam kotak dialog Crosstabs, klik STATISTIC & pilih CHI-SQUARE

Analisis Varian Apabila uji perbedaan yang dilakukan melibatkan rata-rata (mean) lebih dari 2 populasi atau kelompok sampel, teknik statistik yang digunakan adalah analisis varian atau ANOVA (analysis of variance).

Analisis Varian Dalam bentuk paling sederhana, ANOVA memiliki 1 variabel dependen (data metrik atau dalam skala interval atau rasio). Lalu 1 atau lebih variabel independen (data non-metrik dalam skala nominal atau ordinal). Variabel independen ini disebut faktor. Kategorisasi yang dilakukan terhadap variabel independen disebut perlakuan (treatment).

Analisis Varian Banyaknya kategori harus lebih dari 2, karena bila hanya 2 kategori, uji t-test bisa digunakan. Apabila hanya ada 1 variabel independen, maka yang dipakai adalah ANOVA satu-arah (one-way ANOVA). Bila ada 2 variabel independen, maka ANOVA dua-arah (two-way ANOVA). Bila lebih dari 2 variabel independen, digunakan ANOVA multi- arah (N-way ANOVA). Apabila sejumlah variabel independen terdiri dari variabel non-metrik dan metrik, maka teknik statistik yang digunakan adalah ANCOVA (analysis of covariance).

Analisis Varian Dalam pengujian, formulasi hipotesis statistiknya sbb: H0: µ1 = µ2 = …. = µk Ha: µ1 ≠ µ2 ≠ …. ≠ µk (tidak semua rata-rata sama –setidaknya ada dua mean populasi yang tidak sama).

Analisis Varian Contoh: Sebuah department store meneliti efek dari in-store promotion (X) terhadap sales (Y). Variabel dependen  sales --- metric (skala rasio) Variabel independen  in-store promotion --- nonmetric (skala nominal). Dibagi dalam 3 kategori: (1) promosi high, (2) promosi medium, dan (3) promosi low. Dalam SPSS, langkah2nya sbb: ANALYZE > COMPARE MEANS > ONE WAY ANOVA

Data “In-Store Promotion”

Uji ANOVA satu-arah (One-way ANOVA) Nilai signifikansi dengan F test  0.000 < pvalue 0.05, berarti signifikan, sehingga kita menolak H0 dan menerima Ha . Dengan demikian, tingkat in-store promotion terbukti memiliki pengaruh yang signifikan terhadap penjualan.

Uji ANOVA dua-arah (Two-way ANOVA) Misalkan ingin diketahui : apakah in-store promotion dan kupon yang dikeluarkan berpengaruh signifikan terhadap sales. Variabel dependen  sales --- metric (skala rasio) Variabel independen, ada 2 yaitu: X1 (in-store promotion) --- nonmetric (skala nominal). X2 (coupon) --- nonmetric (skala nominal).

Uji ANOVA dua-arah (Two-way ANOVA) Statistik uji yang digunakan adalah ANOVA dua-arah. Dalam SPSS, langkah2nya sbb: ANALYZE > GENERAL LINEAR MODEL > UNIVARIATE Masukkan variabel dependen ke “Dependent Variable” dan variabel independen ke “Fixed Factor(s)”.

Uji ANOVA dua-arah (Two-way ANOVA) Nilai signifikansi Coupon*Promotion 0.206 > pvalue 0.05  tidak signifikan, artinya terima H0 dan tolak H1. Jadi,tingkat in-store promotion dan kupon yang dikeluarkan tidak memilki pengaruh yang signifikan terhadap penjualan.

Uji ANCOVA (Analysis of Covariance) Misalkan ingin diketahui: apakah in-store promotion dan kupon yang dikeluarkan berpengaruh signifikan terhadap sales, sementara kita mengontrol pengaruh dari client. Variabel dependen  sales --- metric (skala rasio) Variabel independen, ada 3  X1 (in-store promotion) --- nonmetric (skala nominal). X2 (coupon) --- nonmetric (skala nominal). X3 (client) metric (skala rasio)

Uji ANCOVA (Analysis of Covariance) Karena variabel independen terdiri atas data metric dan non-metric, maka statistik uji yang digunakan adalah ANCOVA. Dalam SPSS, langkah2nya sbb: ANALYZE > GENERAL LINEAR MODEL > UNIVARIATE Masukkan variabel dependen ke “Dependent Variable”, kemudian variabel independen non metric ke “Fixed Factor(s)”, dan variabel independen metric ke “Covariate(s)”.

Uji ANCOVA (Analysis of Covariance) Nilai signifikansi Clientel 0.363 > pvalue 0.05,  tidak signifikan, jadi terima H0 dan tolak H1. Dengan demikian dapat dikatakan bahwa tingkat in-store promotion dan kupon yang dikeluarkan serta client tidak memilki pengaruh yang signifikan terhadap penjualan.