Inferensia Vektor Rata-Rata
Ukuran Contoh Besar ( n-p besar )
B. Perbandingan Beberapa Rata-Rata Peubah Ganda I. Perbandingan Data Berpasangan Misalkan : X1ij : peubah ke-i dengan perlakuan I X2ij : peubah ke-i dengan perlakuan II i = 1,2,3, …,p ; j = 1,2, 3, …,n Dij = X1ij - X2ij : perbedaan dari pasangan peubah2 acak Dj’ = [ D1j D2j D3j …. Dpj ] : vektor acak dari perbedaan2 E (Dj) = δ Cov(Dj) = ∑d Asumsi : Dj ~ Np( δ , ∑d )
II. Perbandingan Perlakuan (treatment) dari Pengukuran Berulang (repeated measures) a. Pengujian Hipotesis (Hypothesis Testing) Asumsi : Xqx1 ~ Nq( μ , Σ ) q: banyaknya perlakuan Hipotesis Statistik: Ho: Cμ = 0 H1: Cμ ≠ 0 C: matriks kontras
C. Perbandingan Vektor Rata-Rata dari Dua Populasi Independen I. Pengujian Hipotesis (Hypothesis Testing) Asumsi : XI ~ Np ( μI , ΣI ) XII ~ Np ( μII , ΣII ) Hipotesis Statistik: Ho: μI – μII = δo H1: μI – μII ≠ δo
1. Asumsi : ΣI = ΣII = Σ tidak diketahui nilainya Σ = Sg = Sg : matriks ragam-peragam sampel gabungan (pooled) dari kedua populasi SI dan SII : matriks ragam peragam sampel dari populasi I dan populasi II
III. Selang Kepercayaan (Confidence Interval) 1. Selang Kepercayaan simultan (μIi – μIIi) pada (1- α)100%: ℓ’ ( I - II) ± √ c2 ℓ’ (1/nI + 1/nII) Sg ℓ 2. Selang Kepercayaan simultan (μIi – μIIi) pada (1- α)100%: ( Metode Bonferroni ) ℓ’ ( I - II) ± t α/2p;nI+nII-2 √ ℓ’ (1/nI + 1/nII) Sg ℓ
2. Asumsi : ΣI ≠ ΣII dan tidak diketahui nilainya Gunakan ukuran contoh besar : (nI – p) dan (nII – p) besar *) Statistik Uji : ( I - II – δo)’ [1/nI SI + 1/nII SII]-1 ( I - II – δo) ~ χ2p Tolak Ho , terima H1 : μI – μII ≠ δo jika : nilai statistik uji > χ2α ;p Apabila Ho tidak ditolak, dapat diartikan bahwa pada tingkat kepercayaan sebesar (1- α)100% vektor (μI – μII) = δo berada dalam wilayah ellipse.
*) Selang Kepercayaan simultan (μIi – μIIi) pada (1- α)100%: ℓ’ ( I - II ) ± √ χ2α ;p ℓ’ (1/nI SI + 1/nII SII) ℓ Untuk penggunaan sampel yang sama besar dari masing-masing populasi : nI = nII = n *) Statistik Uji : [( I - II ) – δo]’ [(2/n) Sg]-1 [( I - II) – δo] ~ χ2p Tolak Ho , terima H1 : μI – μII ≠ δo jika : nilai statistik uji > χ2α ;p