NILAI RATA-RATA (CENTRAL TENDENCY)

Slides:



Advertisements
Presentasi serupa
UKURAN NILAI PUSAT UKURAN NILAI PUSAT ADALAH UKURAN YG DAPAT MEWAKILI DATA SECARA KESELURUHAN JENIS UKURAN NILAI PUSAT : MEAN , MEDIAN, MODUS KUARTIL,
Advertisements

Statistika dan Aplikasi Komputer Sesi 2: Ukuran Sentral dan Persebaran
Teori Graf.
PENYEBARAN DATA Tujuan Belajar :
SULIDAR FITRI, M.Sc March 18,2014
Statistika Deskriptif: Distribusi Proporsi
Kuswanto, Uji Normalitas  Untuk keperluan analisis selanjutnya, dalam statistika induktif harus diketahui model distribusinya  Dalam uji.
UKURAN-UKURAN STATISTIK
Bulan maret 2012, nilai pewarnaan :

TENDENSI SENTRAL.
UKURAN PEMUSATAN Rata-rata, Median, Modus Oleh: ENDANG LISTYANI.
1 Diagram berikut menyatakan jenis ekstrakurikuler di suatu SMK yang diikuti oleh 400 siswa. Persentase siswa yang tidak mengikuti ekstrakurikuler.
di Matematika SMA Kelas XI Sem 1 Program IPS
(UKURAN PEMUSATAN DAN UKURAN PENYEBARAN)
Ukuran Pemusatan. 70 Deskripsi Pada pertemuan ini mahasiswa akan mempelajari tentang tendensi sentral mencakup mean, median, modus dan cara pencariannya,
UKURAN DISPERSI (PENYEBARAN DATA)
Mari Kita Lihat Video Berikut ini.
Statistika Deskriptif
Bab 6B Distribusi Probabilitas Pensampelan
LATIHAN SOAL DATA TUNGGAL
Contoh DAFTAR Subjek Frekuensi (f) a – b 1 c – d 2 e – f 3 .. Jumlah.
STATISTIKA CHATPER 4b (Ukuran Nilai Letak)
BAB V ukuran pemusatan Dipersiapkan oleh : Ely Kurniawati
UKURAN PENYEBARAN DATA
Median Lambangnya: Mdn, Me atau Mn
Uji Normalitas.
STATISTIKA kelas XI/I PENYAJIAN DATA Sri Wahyuni ( )
DISTRIBUSI FREKUENSI Presented by Ast_Dika.
By : Meiriyama Program Studi Teknik Informatika Sekolah Tinggi Manajemen Informatika dan Komputer Global Informatika Multi Data Palembang.
Ukuran Pemusatan dan Ukuran Penyebaran
DISTRIBUSI FREKUENSI oleh Ratu Ilma Indra Putri. DEFINISI Pengelompokkan data menjadi tabulasi data dengan memakai kelas- kelas data dan dikaitkan dengan.
Ukuran Nilai Pusat Materi 4.
UKURAN PEMUSATAN DAN UKURAN LETAK
Soal Latihan.
Pengujian Hipotesis Parametrik 2
PPS 503 TEKNIK ANALISA DATA PERTEMUAN KE TIGA
UKURAN PEMUSATAN DATA Sub Judul.
UKURAN PEMUSATAN DAN LETAK DATA
PENGUKURAN GEJALA PUSAT / NILAI PUSAT/UKURAN RATA-RATA
Ukuran Pemusatan Yeni Puspita, SE., ME.
Bulan FEBRUARI 2012, nilai pewarnaan :
AREAL PARKIR PEMERINTAH KABUPATEN JEMBRANA
UKURAN NILAI SENTRAL.
PENYAJIAN DATA.
Statistika Deskriptif: Statistik Sampel
DISTRIBUSI FREKUENSI.
Statistika Deskriptif: Distribusi Proporsi
UKURAN PEMUSATAN Rata-rata (average) : B A B V
Nilai Ujian Statistik 80 orang mahasiswa Fapet UNHAS adalah sebagai berikut:
Teknik Numeris (Numerical Technique)
UKURAN PEMUSATAN DAN LETAK DATA
UKURAN LOKASI DAN VARIANSI
DISTRIBUSI PELUANG Pertemuan ke 5.
UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0)
UKURAN TENDENSI SENTRAL DAN PENYIMPANGAN
UKURAN PEMUSATAN Rata-rata (average) : mempunyai kecenderungan memusat
Asyhadu anlaa ilaaha illallaoh Wa asyhadu anna Muhammadan rasuululloh Rodliitu billaahi robbaa Wa bil-islaami diinaa Wa bi Muhammadin nabiyyaw wa rosuulaa.
Ukuran Gejala Pusat (Central Tendency)
BIO STATISTIKA JURUSAN BIOLOGI
UKURAN PEMUSATAN DATA BERKELOMPOK
jumlah bilangan-bilangan dibagi oleh banyaknya bilangan.
STATISTIKA Pertemuan 3: Ukuran Pemusatan dan Penyebaran
VI. UKURAN PEMUSATAN UKURAN PEMUSATAN ADALAH SUATU UKURAN YANG MEMPUNYAI KECENDERUNGAN MEMUSAT ARTINYA CENDERUNG BERADA DI TENGAH-TENGAH DARI KELOMPOK.
VI. UKURAN PEMUSATAN UKURAN PEMUSATAN ADALAH SUATU UKURAN YANG MEMPUNYAI KECENDERUNGAN MEMUSAT ARTINYA CENDERUNG BERADA DI TENGAH-TENGAH DARI KELOMPOK.
CHAPTER 1 DESKRIPSI DATA
CHAPTER 1 DESKRIPSI DATA
UKURAN PEMUSATAN ( Median, dan Modus)
Deskripsi Numerik Data
NILAI RATA-RATA (CENTRAL TENDENCY)
Transcript presentasi:

NILAI RATA-RATA (CENTRAL TENDENCY) Student Lecture Notes NILAI RATA-RATA (CENTRAL TENDENCY) Tujuan Belajar : Setelah mempelajari materi ini, diharapkan mahasiswa mampu : 1. Menjelaskan pengertian nilai rata-rata 2. Menjelaskan sifat-sifat nilai rata-rata 3. Menjelaskan cara-cara perhitungan rata-rata 4. Menjelaskan interpretasi perhitungan rata-rata

Mengapa nilai rata-rata diperlukan ??? Student Lecture Notes Nilai rata-rata ialah suatu nilai yang dapat mewakili sekelompok nilai hasil pengamatan Memiliki kecenderungan untuk berada ditengah-tengah suatu distribusi sehingga disebut juga Kecenderungan Nilai Tengah (Central Tendency) Mengapa nilai rata-rata diperlukan ??? Memberikan gambaran deskriptif terhadap data yang diperoleh Membandingkan gambaran deskriptif suatu kelompok dengan kelompok lain Sebagai dasar dalam perhitungan statistik inferensia

Mean atau Arithmetic Mean Student Lecture Notes Student Lecture Notes NILAI RATA-RATA (CENTRAL TENDENCY) Mean atau Arithmetic Mean Weighted Mean Median Modus 3

Ukuran nilai tengah yang paling sering digunakan Student Lecture Notes Sifat dari Mean : Ukuran nilai tengah yang paling sering digunakan Merupakan wakil dari keseluruhan nilai Berasal dari semua nilai pengamatan Labil (sangat dipengaruhi oleh nilai ekstrim)‏ Simbol : x untuk Sampel μ untuk Populasi Rumus Mean ialah jumlah semua hasil pengamatan (Ʃx) dibagi dengan banyaknya pengamatan (n) Rumus (1) : (1) x = Ʃx n

Jika masing-masing ditambah dengan angka 2 menjadi : Student Lecture Notes Student Lecture Notes Bila seluruh data ditambah dengan konstanta c yaitu yi = xi + c, i = 1,2,…..,n maka mean y = mean x + c Bila seluruh data dikalikan dengan konstanta c yaitu yi = xi + c, i = 1,2,…..,n maka mean y = (mean x).c Ex : Data : 2,3,4,2,3,5,3,6,3,4 dan mean 3.5 Jika masing-masing ditambah dengan angka 2 menjadi : 4,5,6,4,5,7,5,8,5,6 dengan mean 5.3 = 3.5+2 Jika masing-masing dikalikan dengan angka 2 menjadi : 4,6,8,4,6,10,6,12,6,8 dengan mean 7 = 3.5x2 5

Cara Perhitungan Rata-Rata Contoh 1 : Hasil pengukuran berat badan 10 orang penderita diabetes melitus yang dirawat di Rumah Sakit M adalah sbb : 65,60, 55, 70, 67, 53, 61, 64, 75 dan 50 (dalam kg) Dengan menggunakan rumus.1 maka : x = Ʃx = 65+60+55+70+67+53+61+64+75+50 n 10 = 62 kg

(2) Data disusun dalam bentuk distribusi frekuensi tanpa Student Lecture Notes Rumus (1) hanya dapat digunakan pada jumlah pengamatan yang tidak banyak sedangkan jika data yang tersedia cukup banyak yaitu dengan beberapa rumus yaitu : (2) Data disusun dalam bentuk distribusi frekuensi tanpa pengelompokkan Rumus (2) : x = Ʃfixi Ʃfi (3) Data disusun dalam bentuk distribusi frekuensi dengan interval kelas yang sama Rumus (3) : x = Ʃfi Nt Ket : x = rata-rata Ʃ = jml f = frekuensi x = hasil pengamatan Ket : x = rata-rata Ʃ = jml f = frekuensi Nt = nilai tengah kelas

Cara Perhitungan Rata-Rata Contoh 2 : Hasil pengukuran berat badan 30 orang penderita diabetes melitus yang dirawat di Rumah Sakit M adalah sbb : Berat Badan (kg) f f.x 43 50 55 60 62 63 65 67 68 69 70 71 72 75 78 4 1 2 3 172 200 120 195 134 210 216 156 Jumlah 30 1.866 Dengan menggunakan rumus.2 x = Ʃfx maka : n = 1.866 30 = 62.2 kg

Cara Perhitungan Rata-Rata Contoh 3 : Hasil pengukuran berat badan 30 orang penderita diabetes melitus yang dirawat di Rumah Sakit M adalah sbb : (frekuensi distribusi dikelompokkan) Berat Badan (kg) f Nt f.Nt 41 - 45 46 - 50 51 - 55 56 - 60 61 - 65 66 - 70 71 - 75 76 - 80 4 1 2 5 7 43 48 53 58 63 68 73 78 172 192 116 315 476 365 156 Jumlah 30 1.845 Dengan menggunakan rumus.3 x = Ʃfi Nt Ʃfi = 1.845 30 = 61.5 kg

(3) Perhitungan rata-rata menggunakan kode Rumus (4) : x = k + (Ʃdi/n) Student Lecture Notes (3) Perhitungan rata-rata menggunakan kode Rumus (4) : x = k + (Ʃdi/n) Rumus (5) : x = k + (Ʃfi di/ Ʃfi) Ket : x = rata-rata Ʃ = jml k = sembarang nilai yang merupakan asumsi rata-rata di = selisih nilai xi terhadap k n = jumlah pengamatan Ket : x = rata-rata Ʃ = jml k = sembarang nilai yang merupakan asumsi rata-rata di = selisih nilai xi terhadap k f = frekuensi n = jumlah pengamatan

Student Lecture Notes Student Lecture Notes Menghitung rata-rata yang terdiri dari beberapa kelompok dengan jumlah pengamatan setiap kelompoknya berbeda sehingga memerlukan pembobotan (weighted) Rata-rata dengan pembobotan (weighted mean) ialah rata- ratakan k buah nilai x1, x2,...xk dengan dengan memberi pembobot w1, w2,....wk pada nilai-nilai tsb Dengan rumus : 11

Cara Perhitungan Rata-Rata Student Lecture Notes Cara Perhitungan Rata-Rata Contoh 5. Pengukuran rata-rata berat badan 3 kelompok penderita penyakit paru-paru yang masing-masing kelompok terdiri dari 3,5 dan 10 orang dengan berat badan sbb : Kelompok Berat Badan (kg) 1 (n = 3) 50 55 54 2 (n = 5) 53 52 57 3 (n = 10) 51 48 55 47 57 58 60 59 52 62 Dengan menggunakan rumus weighted mean yaitu : dengan w1 =3 ; x1 = 53 ; w2 = 5 ; x2 = 53.5 ; w3 = 10 ; x3 = 54.9, maka : xw = (3x53)+(5x53.5)+(10x54.9) 3+5+10 = 54.17 kg 12

Cocok dipakai untuk data yang distribusinya miring (tidak simetris) Student Lecture Notes Student Lecture Notes Median membagi data menjadi dua bagian yaitu 50% data berada dibawah nilai median dan 50% data berada di atas nilai median Sifat-sifat median : Median dapat digunakan untuk data kuantitatif baik kontinue maupun diskrit Dapat digunakan untuk data kualitatif yaitu variabel yang berskala ordinal Cocok dipakai untuk data yang distribusinya miring (tidak simetris) Median lebih stabil karena tidak dipengaruhi oleh nilai ekstrim 13

Mengurutkan data dari terkecil ke terbesar Student Lecture Notes Student Lecture Notes Mengurutkan data dari terkecil ke terbesar Menentukan posisi median yaitu (n+1)/2 Menghitung nilai median Contoh : Data : 2,3,4,2,3,5,3,6,3,4 Diurutkan menjadi : 2,2,3,3,3,3,4,4,5,6 Posisi median : (10 + 1)/2 = 5.5 (berarti antara angka ke-5 dan ke-6) Nilai median adalah (3+3)/2 = 3 14

Rumus median untuk data berkelompok Student Lecture Notes Student Lecture Notes Rumus median untuk data berkelompok Med Ket : b = tepi bawah kelas median yaitu kelas interval dimana median akan terletak p = panjang kelas median n = banyaknya data F = jumlah semua frekuensi yang terletak sebelum kelas median f = frekuensi kelas median 15

Cara Perhitungan Rata-Rata Student Lecture Notes Cara Perhitungan Rata-Rata Contoh 6 : NILAI FREKUENSI 30-39 40-49 50-59 60-69 70-79 80-89 90-99 4 6 8 12 9 7 50 Menggunakan rumus median untuk data berkelompok yaitu : dengan b = 59.5 ; p = 10 ; F = 18 ; f = 12 maka : Med = 59.5 + 10((1/2 x 50)-18) 12 = 59.5 + 5.83 = 65.3 Med 16

Tidak memperhitungkan seluruh pengamatan Student Lecture Notes Student Lecture Notes Secara kuantitatif nilai yang paling banyak muncul atau frekuensi paling besar Sifat-sifat modus : Modus paling stabil terhadap nilai ekstrim dibandingkan mean dan median Tidak memperhitungkan seluruh pengamatan Jarang dipakai untuk analisis statistik 17

Proses perhitungannya : Mengurutkan data dari terkecil ke terbesar Student Lecture Notes Student Lecture Notes Proses perhitungannya : Mengurutkan data dari terkecil ke terbesar Bisa mengandung 1 modus, 2 modus dst serta tidak ada modus Contoh : Data : 2,3,4,2,3,5,3,6,3,4, Mod = 3 Data 2,3,4,2,3,5,3,2,3,2, Mod = 2 dan 3 Data 2,3,4,5,6,7,8,9, tidak ada modus 18

Rumus mencari modus untuk data berkelompok : Student Lecture Notes Rumus mencari modus untuk data berkelompok : Ket : b = tepi bawah kelas modus yaitu kelas interval yang memiliki frekuensi terbanyak p = panjang kelas modus b1 = frekuensi kelas modus dikurangi frekuensi kelas interval sebelumnya b2 = frekuensi kelas modus dikurangi frekuensi kelas interval sesudahnya Mod

Cara Perhitungan Rata-Rata Student Lecture Notes Cara Perhitungan Rata-Rata Contoh 7 : Berat badan 10 wanita hamil yang datang ke RSIA dikota B pada bulan Nopember 2008 adalah sbb : Menggunakan rumus modus untuk data berkelompok yaitu : dengan b = 59.5 ; p = 10 ; b1 = 12-8 = 4 ; b2 = 12 – 9 = 3 maka : Mod = 59.5 + 10 x (4/(4+3)) = 59.5 + 5.71 = 65.21 NILAI FREKUENSI 30-39 40-49 50-59 60-69 70-79 80-89 90-99 4 6 8 12 9 7 50 Mod 20

INTERPRETASI PERHITUNGAN RATA-RATA Perhitungan nilai rata-rata dilakukan untuk memberikan interpretasi terhadap data yang diperoleh Dengan menggunakan salah satu ukuran nilai rata-rata, maka diperoleh suatu nilai yang bisa mewakili seluruh nilai observasi yang diperoleh Pada kurva yang simetris, mean, median dan modus terletak pada satu titik X = Me = Mo

INTERPRETASI PERHITUNGAN RATA-RATA Pada kurva yang berdistribusi tidak simetris : Pada distribusi miring ke kanan, modus akan bergeser ke kiri mengikuti nilai dengan frekuensi terbanyak, mean akan bergeser ke kanan karena terpengaruh oleh nilai ekstrim dan median terletak antara mean dan modus Mo Me x

INTERPRETASI PERHITUNGAN RATA-RATA Pada kurva yang berdistribusi tidak simetris : Pada distribusi miring ke kiri, modus akan bergeser ke kanan mengikuti nilai dengan frekuensi terbanyak, mean akan bergeser ke kiri karena terpengaruh oleh nilai ekstrim dan median terletak antara mean dan modus x Me Mo

INTERPRETASI PERHITUNGAN RATA-RATA Pada distribusi miring (kekanan atau kekiri), median selalu berada ditengah-tengah antara mean dan modus, mean selalu tertarik ke arah nilai ekstrim. Secara empiris, jarak antara modus dan median adalah 2/3 jarak modus dan mean