Model ARIMA Box-Jenkins Pertemuan 11
Metodologi Box-Jenkins: 1. Identifikasi model untuk sementara data lampau digunakan untuk mengidentifikasi model ARIMA yang sesuai. 2. Penaksiran parameter pada model sementara data lampau digunakan untuk mengestimasi parameter dari model sementara. 3. Pemeriksaan diagnosa, apakah model memadai? berbagai diagnosa digunakan untuk memeriksa kecukupan model sementara. jika memenuhi, maka model bisa digunakan untuk meramalkan. Bila tidak, maka ditetapkan model sementara yang baru. 4. Meramalkan model sementara yang sudah sesuai dapat digunakan untuk meramalkan nilai yang akan datang.
Diagram Metodologi Box-Jenkins Stationary dannon- stationary ACF dan PACF 1. Identifikasi model sementara Tdk 2. Estimasi parameter Testing parameter 3. Pemeriksaaan diagnosa [ apakah modelmemadai? ] Tingkat residu Distribusi Normal dari residual Ya 4. Meramalkan Perhitungan peramalan
Pola umum data time series Nonseasonal Stationary models Nonseasonal Nonstationary models Seasonal and Multiplicative models Intervention models ACF dan PACF
Stationary dan Nonstationary data Time Series Stationer Nonstationer
Perbedaan pertama: Zt = Y2t – Y2t-1 Nonstationer Differences Stationer
Sample Autocorrelation Function (ACF) For the working series Z1, Z2, …, Zn :
ACF for stationary time series dies down (exponential) 1 -1 Lag k 8 cuts off 1 -1 Lag k 8 no oscillation dies down (exponential) dies down (sinusoidal) 1 -1 Lag k 8 1 -1 Lag k 8 oscillation
Dying down fairly quickly versus extremely slowly Lag k 8 1 -1 stationary time series (usually) Dying down extremely slowly nonstationary time series (usually) Lag k 8 1 -1
Sample Partial Autocorrelation Function (PACF) For the working series Z1, Z2, …, Zn : Corr(Zt,Zt-k|Zt-1,…,Zt-k+1)
Calculation of PACF at lag 1, 2 and 3 The sample partial autocorelations at lag 1, 2 and 3 are:
MINITAB output of STATIONARY time series ACF PACF Dying down fairly quickly Cuts off after lag 2
MINITAB output of NONSTATIONARY time series ACF PACF Dying down extremely slowly Cuts off after lag 2
Explanation of ACF … [MINITAB output] + + t/2 . se(rk) t/2 . se(rk)
General Theoretical ACF and PACF of ARIMA Models Model ACF PACF MA(q): moving average of order q Cuts off Dies down after lag q AR(p): autoregressive of order p Dies down Cuts off after lag p ARMA(p,q): mixed autoregressive- Dies down Dies down moving average of order (p,q) AR(p) or MA(q) Cuts off Cuts off after lag q after lag p No order AR or MA No spike No spike (White Noise or Random process)