Perbandingan Ganda : SCHEFFE ANAVA 1 Jalan Bab 1 Perbandingan Ganda : SCHEFFE ANAVA 1 Jalan
Komparasi Ganda Analisis variansi hanya menentukan ada yang beda, tetapi tidak diketahui mana saja yang beda. Cara untuk mengetahuinya dilakukan melalui komparasi ganda Pada 1, 2, 3, 4, misalnya, komparasi ganda memeriksa semua pasangan 1 2 1 3 1 4 2 3 2 4 3 4
Metoda Komparasi Ganda Ada beberapa metoda komparansi ganda, berupa Uji LSD (least significant difference) Fisher Uji Scheffe Uji HSD (honestly significant difference) Tukey Uji Duncan Uji Newman-Keuls Hasilnya bisa berbeda. Uji Scheffe paling konservatif.
Uji Scheffe Kita melihat satu pasang rerata. Kita lihat pasangan i dan j. Pasangan sampel adalah i dan j Pengujian perbedaan rerata di antara pasangan dilakukan melalui distribusi probabilitas F Fisher
Langkah-langkah Uji Scheffe Susun Hipotesis Pilih tingkat signifikansi Hitung F Tarik kesimpulan Tolak Ho jika : F> 2. F, a-1, N-a
Contoh 1 Sebagai manager produksi, anda ingin melihat mesin pengisi akan dilihat rata-rata waktu pengisiannya. Diperoleh data seperti di samping. Pada tingkat signifikansi 0.05 adakah perbedaan rata-rata waktu ? Mesin1 Mesin2 Mesin3 25.40 23.40 20.00 26.31 21.80 22.20 24.10 23.50 19.75 23.74 22.75 20.60 25.10 21.60 20.40
Data Perlakuan Total 1 2 3 25.40 23.40 20.00 26.31 21.80 22.20 24.10 23.50 19.75 23.74 22.75 20.60 25.10 21.60 20.40 124.65 113.05 102.95 340.65
Tabel Anova dan Kesimpulan Sumber Variasi Derajat Bebas Jumlah Kuadrat Rerata Kuadrat F Perlakuan 4-1=3 15.462 5.154 F = 21.213 Sesatan 20-4=16 3.888 0.243 Total 20-1=19 19.350 Karena Fhitung = 21.213 > 3.24 maka H0 ditolak. Jadi ada rata-rata yang tidak sama.
1. Susun Hipotesis 2. Dipilih tingkat signifikansi 5%
3. Hitungan mesin 1 mesin 2 mesin 3 25.4 23.4 20 26.31 21.8 22.2 24.1 23.5 19.75 23.74 22.75 20.6 25.1 21.6 20.4 yi. 124.65 113.05 102.95 rerata 24.93 22.61 20.59 3. Hitungan
4. Kesimpulan :
Latihan 2 Seorang guru SMU mengadakan penelitian tentang keunggulan metode mengajar dengan beberapa metode pengajaran. Bila data yang didapat seperti pada tabel disamping, ujilah dengan signifikasi 5% apakah keempat metode mengajar tersebut memiliki hasil yang sama? (asumsikan keempat data berdistribusi Normal dan variasnisnya sama). Jika ada pengaruh, tentukan mana metode yang paling signifikan? Metode A B C D 70 68 76 67 75 87 66 77 74 78 57 89