SISTEM PERSAMAAN KUADRAT

Slides:



Advertisements
Presentasi serupa
FUNGSI KUADRAT.
Advertisements

Persamaan Garis dan Grafik Kuadrat
SISTEM KOORDINAT.
Selamat Datang Dalam Kuliah Terbuka Ini
Hubungan Non-linear
Pertidaksamaan Kelas X semester 1 SK / KD Indikator Materi Contoh
Polinom dan Bangun Geometris.
Fungsi Non Linier Segaf, SE.MSc..
Widita Kurniasari Universitas Trunojoyo
Fungsi Kuadrat Grafik Fungsi Kuadrat Definisi 1.7 : Fungsi y = f (x) =
RELASI & FUNGSI Widita Kurniasari.
Assalamu’alaikum Wr. Wb
MODUL KULIAH MATEMATIKA TERAPAN
Kelas XE WORKSHOP MATEMATIKA
i. Fungsi kuadrat - Penyelesaian fungsi kuadrat dengan pemfaktoran
GEOMETRI DALAM BIDANG Pertemuan 15.
Persamaan Garis Singgung pada Kurva
KONSEP DASAR Fungsi dan Grafik
Fungsi Non Linear Yeni Puspita, SE., ME.
BAB IV Kurva Kuadratik.
HUBUNGAN ANTARA GARIS LURUS DAN PARABOLA
By Eni Sumarminingsih, SSi, MM
IRISAN KERUCUT PERSAMAAN LINGKARAN.
FUNGSI KUADRAT.
Fungsi Kuadrat dan Fungsi Eksponensial
Persamaan Garis Lurus Latihan Soal-soal.
PENYELESAIAN PERSAMAAN KUADRAT
Fungsi WAHYU WIDODO..
IRISAN KERUCUT DAN KOORDINAT KUTUB
BAB VII HUBUNGAN NON-LINEAR.
POKOK BAHASAN 3 FUNGSI NON LINIER
FUNGSI KUADRAT.
Hubungan Non-linear.
Hubungan Non Linier Pemahaman fungsi non linier dalam mempelajari ilmu pertanian juga penting meskipun banyak hubungan antara variabel dapat dijelaskan.
Menggambar Grafik Fungsi Kuadrat
Hubungan Non-linear
Oleh Neng Siva Afni N ( ) Iis Ismayani (070434)
Fungsi Kuadrat Pertemuan 4
Penggambaran Fungsi Kuadrat dan Fungsi Kubik
Fungsi Riri Irawati, M.Kom 3 sks.
HUBUNGAN NON LINIER.
FUNGSI NON LINIER Matematika Ekonomi , by Agus Sukoco, ST, MM
GEOMETRI DALAM BIDANG Pertemuan 15.
Fungsi non linier SRI NURMI LUBIS, S.Si.
KONIK DAN KOORDINAT KUTUB
NILAI MUTLAK PERSAMAAN GARIS FUNGSI
07 SESI 6 MATEMATIKA BISNIS Viciwati STl MSi.
Dosen pengasuh: Moraida hasanah, S.Si.,M.Si
Bab 3 Fungsi Non Linier.
Pertemuan 4 Fungsi Kuadrat Grafik Fungsi Kuadrat
MATEMATIKA EKONOMI Pertemuan 9: Fungsi Non-Linier Dosen Pengampu MK:
FUNGSI KUADRAT Oleh : Drs.Alexander Htu,M.Si
Fungsi Kuadrat dan Grafik Fungsi Kuadrat
BAB 4 FUNGSI KUADRAT.
MATEMATIKA EKONOMI Pertemuan 9: Fungsi Non-Linier Dosen Pengampu MK:
FUNGSI PANGKAT DUA (FUNGSI KUADRAT)
Irisan Kerucut dan Koordinat Kutub
Fungsi Persamaan, dan Pertidaksamaan Kuadrat
KONSEP DASAR Fungsi dan Grafik
KD. 2.2 Menggambar grafik fungsi Aljabar sederhana dan fungsi kuadrat.
Irisan Kerucut dan Koordinat Kutub
Fungsi Kuadrat dan Grafik Fungsi Kuadrat
Matematika Kelas X Semester 1
Irisan Kerucut E L I P S by Gisoesilo Abudi.
MATEMATIKA EKONOMI Pertemuan 9: Fungsi Non-Linier Dosen Pengampu MK:
BAB 7. HUBUNGAN NON LINEAR
BAB 7. HUBUNGAN NON LINEAR
Fungsi Kuadrat HOME NEXT PREV a. Persamaan grafik fungsi kuadrat
IRISAN KERUCUT  = 90  lingkaran  <  < 90  elips
10 LINGKARAN DAN ELIPS Ir. Pranto Busono M.Kom. FASILKOM
Transcript presentasi:

SISTEM PERSAMAAN KUADRAT

SILABI Fungsi kuadrat - Identifikasi persamaan kuadrat - Lingkaran - Elips - Hiperbola - Parabola

Fungsi Kuadrat dan Grafik Fungsi Kuadrat Fungsi dengan pangkat tertinggi variabelnya dua Bentuk garisnya melengkung dan hanya punya satu titik puncak

a = - Titik puncak (h,k) h = - b 2a k = b2 – 4ac = D -4a - 4a Bentuk Umum : f(x) = ax2 + bx + c atau Y = ax2 + bx + c a ≠ 0 Grafik a = Titik puncak (h,k) h = - b 2a k = b2 – 4ac = D -4a - 4a a = - + Y Y x x

Sketsa Grafik Fungsi Kuadrat 1.Titik potong dengan sumbu koordinat a.Memotong sumbu x y = 0 ax2 + bx + c = 0 D = b2- 4ac ≥ 0 b. Memotong sumbu y x = 0 y = c (0, c) 2.Nilai balik x = - b 2a Y = D -4 a 3. Koordinat titik balik -b , D 2a -4a 4. Jenis titik balik a > 0 kurva terbuka keatas minimum a < 0 kurva tebuka ke bawah maksimum

Mencari Grafik Fungsi Kuadrat Cara : Cari titik puncak Cari nilai x dan y lainnya dengtan cara memasukkan nilai x pada persamaan untuk memperoleh nilai y, atau dapat juga mencari titik potong sumbu x dan y Contoh : Y = x2 – 2x – 3 Titik puncak : h = - b = - (-2) = 1 2a 2.1 k = D = b2 – 4 ac - 4a - 4a = (-2)2 – (4.1.-3) - 4.1 = 16 = - 4 - 4 Jadi titik puncak p (h,k) = ( 1,-4) Titik potong sumbu x y = 0 X2 -2 x -3 = 0 (x-3) (x+1) = 0 x -3 = 0 x + 1 = 0 x1 = 3 x2 = -1 Jadi (3,0) Jadi ( -1,0)

Titik potong sumbu y x = 0 X2 - 2x - 3 = y 02 - 2.0 - 3 = y Y = - 3 jadi (0,- 3) x -2 0 1 2 4 y 5 -3 -4 -3 5 (4,5) (-2,5) (-1, 0) (1, - 4) (0,-3)

Contoh soal Cari titik puncak, titik potong sumbu x dan y serta gambar grafiknya Y = 2 + 3x + x2 y = 2 + 5x + 2x2 y = 2x2 + 8x + 1 Y = 3x2 + 2x -7 Y = x2 – 15 x -7 Y = 5x2 + 3x - 1 Y = X2 – 23 x -8

Gambar Potongan Kerucut Lingkaran Parabola Elips Hiperbola

Identifikasi Persamaan Kuadrat Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 Jika B = 0 dan A = C ≠ 0  lingkaran Jika B2 – 4AC < 0  Elips Jika B2 – 4AC > 0  Hiperbola Jika B2 – 4AC = 0  Parabola Ax2 + Cy2 + Dx + Ey + F = 0 Jika A = C ≠ 0  lingkaran Jika A ≠ C, tanda sama  elips Jika A dan C berlawanan tanda  Hiperbola Jika A=0 atau C=0, tapi tidak keduanya  parabola

Lingkaran Lingkaran didefinisikan sebagai tempat kedudukan atau lokus titik-titik P(x,y) yang jaraknya r sampai suatu titik M yang dinamakan pusat lingkaran adalah sama. Persamaan lingkaran menjadi sederhana bila pusat lingkaran berimpit dengan asal 0. Berlaku hukum Pythagoras x2 + y2 = r2

Lingkaran © y Bila pusat lingkaran dipindahkan dari 0 ke M(h,k) , maka juga dengan hukum pythagoras diperleh persamaan lingkaran : (x – h)2 + (y – k)2 = r2 x  (x – h), y  (y – k) Dapat ditulis x2 + y2 - 2hx - 2ky + (h2+k2+r2)=0 P(x,y) y r k M(h,k) P(x,y) y r x x x h h dan k bisa positif / negatif  persamaan lingkaran : Ax2 + Ay2 + Dx + Ey + F = 0  A = C dan B = 0

Elips Elips didefinisikan sebagai lokus titik-titik yang jumlah jaraknya hingga dua titik tertentu, yang dinamakan fokus F dan F’ adalah tetap. Persamaan elips menjadi sederhana bila dipilih asal 0 di pertengahan FF’ dan sumbu y tegak lurus FF’. Misal 0F = 0F’ = c, PF + PF’ = 2a dan a2 – c2 = b2

Elips © Y b B P (x,y) r’ y r A’ F’ F A X -c x c a B

Elips © Adapun AA’ adalah sumbu mayor dan BB’ adalah sumbu minor elips. Bila elips dipindahkan sejajar sehingga pusatnya tidak lagi di 0.  titik M (h,k) maka : Bentuk umum persamaan elips : Ax2 + Cy2 + Dx + Ey + F = 0

Parabola Parabola ialah tempat kedudukan titik-titik yang berjarak sama terhadap sebuah titik fokus dan sebuah garis lurus yang disebut direkstris Persamaan parabola menjadi sederhana bila dipilih asal 0 di M dan FT = sumbu y. Dengan hukum pythagoras : x2 + (y – x)2 = (y + x)2 x2 – 2yp = 2yp x2 = 4py y = ¼ px2 = ax2

Parabola © Y Bila parabola dipindahan sejajar sehingga puncaknya tidak lagi 0 tetapi di M(h,k) maka: (x - h)2 = 4p(y - k) x2 - 2hx - 4py + (h2 + 4pk) = 0 Ax2 + Dx + Ey + F = 0 Cx2 + Dx + Ey + F = 0 M(h,k) P(x,y) y + p F y – p p X p d T

Hiperbola Hiperbola ialah tempat kedudukan titik-titik yang perbedaan jaraknya terhadap dua fokus selalu konstan. Sebuah hiperbola mempunyai dua sumbu simetri yang saling tegak lurus dan sepasang asimtot.

Hiperbola © y y asimtot (i,j) (i,j) asimtot Sumbu lintang x x Sumbu lintang Rumus Umum : Ax2 – Cy2 + Dx + Ey + F =0