Kinetika Kimia Studi/kajian tentang laju reaksi Pengertian Laju reaksi

Slides:



Advertisements
Presentasi serupa
Pengantar Kinetika Kimia II: Orde Reaksi & Waktu Paruh
Advertisements

Kinetika Kimia Studi/kajian tentang laju reaksi Pengertian Laju reaksi
KINETIKA KIMIA BAB X.
BAB 2 PENERAPAN HUKUM I PADA SISTEM TERTUTUP.
3/30/2011 By farQimiya YK 1 NAMA : FARID QIM IYA SMA N 1 YOGYAKARTA.
LIMIT FUNGSI LIMIT FUNGSI ALJABAR.
Soal No 17 halaman 66 Find a) the coordinates of the foci and vertices for hyperbola whose equations given, b) equation of the asymptotes. Sketch the curve.
TERMODINAMIKA LARUTAN:
Luas Daerah ( Integral ).
Chemical Kinetics A study on reaction rate and mechanism Introduction
Studi/kajian tentang laju reaksi
FISIKA TERMAL BAGIAN 2.
LAJU DAN MEKANISME DALAM REAKSI KIMIA
MOTOR BAKAR Kuliah I.
2. Introduction to Algorithm and Programming
Bayesian: Multi-Parameter Model
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
KUSWANTO, SUB POKOK BAHASAN Mata kuliah dan SKS Manfaat Deskripsi Tujuan instruksional umum Pokok bahasan.
Training, Learning, and Development Strategy
Analisis spektra UV-Vis senyawa kompleks
CHAPTER 2 THERMOCHEMISTRY.
Game Theory Purdianta, ST., MT..
Korelasi Linier KUSWANTO Korelasi Keeratan hubungan antara 2 variabel yang saling bebas Walaupun dilambangkan dengan X dan Y namun keduanya diasumsikan.
TEKNIK PENGINTEGRALAN
1. The transformation of raw materials into products of greater value by means of chemical reaction is a major industry, and a vast array of commercial.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Mekanisme Pasar Permintaan dan Penawaran
TRANSPORT OF IONS IN SOLUTION
1 Pertemuan 21 Function Matakuliah: M0086/Analisis dan Perancangan Sistem Informasi Tahun: 2005 Versi: 5.
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
Bina Nusantara Mata Kuliah: K0194-Pemodelan Matematika Terapan Tahun : 2008 Aplikasi Model Markov Pertemuan 22:
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
Penentuan Orde reaksi dan k Pengaruh Temperatur terhadap Laju Reaksi.
1 Pertemuan 11 Function dari System Matakuliah: M0446/Analisa dan Perancangan Sistem Informasi Tahun: 2005 Versi: 0/0.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Review. 2. The failures of Classical Physics:  Black-body radiations Medan elektromagnetic adalah kumpulan osilator harmonik. 1 osilator = 1 frekuensi.
Chapter 10 – The Design of Feedback Control Systems PID Compensation Networks.
Electric Field Wenny Maulina. Electric Dipole A pair of equal and opposite charges q separated by a displacement d is called an electric dipole. It has.
Comparative Statics Slutsky Equation
Smoothing. Basic Smoothing Models Moving average, weighted moving average, exponential smoothing Single and Double Smoothing First order exponential smoothing.
KOMUNIKASI DATA Materi Pertemuan 3.
LEVEL XII SEMESTER 2 SMKN 7 BANDUNG
COLLIGATIVENATURE SOLUTION
CLASS X SEMESTER 2 SMKN 7 BANDUNG
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
Creatif by : Nurlia Enda
Thermochemistry For Technological SMK and Agriculture
COMPOUND NOMENCLATURE AND EQUATION OF REACTION
Pengujian Hipotesis (I) Pertemuan 11
Velocity of Reaction and Energy
Mole Concept For Technological And Agriculture
Work and Energy (Kerja dan Energi)
Metabolisme Karbohidrat-2 (Glikolisis, Fermentasi alkohol dan fermentasi asam laktat) (5) Drs. Sutarno, MSc., PhD.
Parabola Parabola.
CLASS X SEMESTER 2 SMKN 7 BANDUNG
VECTOR VECTOR IN PLANE.
BILANGAN REAL BILANGAN BERPANGKAT.
Pertemuan <<11>> << LAJU REAKSI>>
Two-and Three-Dimentional Motion (Kinematic)
REAL NUMBERS EKSPONENT NUMBERS.
FACTORING ALGEBRAIC EXPRESSIONS
Basic Law and Chemical Calculation
Master data Management
AIR STRIPPING The removal of volatile contaminants from water and contaminated soils.
Things You Need to Know Before Running on the Beach.
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
By Yulius Suprianto Macroeconomics | 02 Maret 2019 Chapter-5: The Standard of Living Over Time and A Cross Countries Source: http//
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Wednesday/ September,  There are lots of problems with trade ◦ There may be some ways that some governments can make things better by intervening.
Transcript presentasi:

Kinetika Kimia Studi/kajian tentang laju reaksi Pengertian Laju reaksi http:// fpmipa.upi.edu/kuliahonline Pengertian Laju reaksi Pengukuran Laju Penentuan Hk. Laju Pengaruh Temperatur pada Laju reaksi Mechanisme Reaksi Catalysis

Temperatur dan Laju Reaksi; Arhenius Arrhenius mengamati bahwa kurva (ln k) vs. (1/T) menghasilkan garis lurus, pada hampir semua kasus, Nilai Gradien adalah charakteristik dari suatu reaksi dan selalu berharga negative. Dari pengamatan tersebut dapat diturunkan persamaan

Ujian Tengah Semester Senin, 31 Maret 2008 Bahan Pengertian Laju reaksi Pengukuran Laju Penentuan Hk. Laju Pengaruh Temperatur pada Laju reaksi

Temperatur dan Laju Reaksi; Arhenius Bentuk lain persamaan di atas adalah: Dinamakana persamaan arhenius Ea = Energi aktivasi A = faktor preexponensial atau faktor Arhenius

Arhenius; Energi Aktivasi Potential Energy Reactants Products Reaction Coordinate

Arrhenius; Energi Aktivasi Potential Energy Energi aktivasiEa Reactants Products Koordinat reaksi

Arhenius; Energi Aktivasi Potential Energy Komples Teraktivasi Reactants Products Koordinat reaksi

Arhenius; Energi Aktivasi Potential Energy } Reactants DH Products Koordinat reaksi

Arrhenius; Energi Aktivasi Br---NO Potential Energy Br---NO Keadaan Transisi 2BrNO 2NO + Br2 Koordinat reaksi

Temperature and Rate Activation Energy; another example Consider the rearrangement of methyl isonitrile: In H3C-NC, the C-NC bond bends until the C-N bond breaks and the NC portion is perpendicular to the H3C portion. This structure is called the activated complex or transition state. The energy required for the above twist and break is the activation energy, Ea. Once the C-N bond is broken, the NC portion can continue to rotate forming a C-CN bond. H 3 C N

Some Points about Ea Ea Selalu positif. Semakin besar nilai Ea, semakin lambat suatu reaksi Semakin besar nilai Ea semakin tajam slope (ln k) vs. (1/T). A high activation energy corresponds to a reaction rate that is very sensitive to temperature. The value of Ea itself DOES NOT CHANGE with temperature.

Arrhenius; Faktor Frekuensi Total tumbukan dengan energi yang melampaui Ea: ze-Ea/RT z = total collisions e is Euler’s number (opposite of ln = 2,72) Ea = activation energy R = ideal gas constant T is temperature in Kelvin Jika seluruh tumbukan yang mealmpaui Ea menghasilkan reaksi: k = ze-Ea/RT

Temperature and Rate Activation Energy

Arrhenius; Faktor Frekuensi Laju reaksi yang diamati selalu lebih rendah dari jumlah tumbukan Hanya tumbukan efektif yang menghasilkan reaksi Tumbukan yang effective terkait dengan orientasi molekul (faktor sterik) Dalam persamaan Arhenius factor sterik ditulis sebagai p Sehingga: k = pze-Ea/RT

Not all collisions leads to a reaction For effective collisions proper orientation of the molecules must be possible

O N Br O N Br O N Br No Reaction O N Br O N Br

Temperature and Rate The Orientation Factor Consider the reaction between an atom of chlorine and a molecule of nitrosyl chloride: Cl + NOCl  NO + Cl2 There are two possible ways that Cl atoms and NOCl molecules can collide; one is effective and one is not.

Temperature and Rate The Orientation Factor

Determining Arrhenius Parameters Baik A atau Ea dapat ditentukan dari grapik (ln k) vs. (1/T). Gradien yang bernilai negatif dapat dikalikan dg. -R to give Ea (positive). The y-intercept = ln A

Example E7.8 Tentukan A dan Ea dari data berikut T/K 300 350 400 450 500 k/M-1s-1 7.9E6 3.0E7 7.9E7 1.7E8 3.2E8

Example E7.8 ln k 15.88 17.22 18.18 18.95 19.58 1/T (x 103) 3.33 2.86 2.50 2.22 2.00 Putting these values into a linear regression pro-gram gives intercept = 25.11 = ln A, so A = 8.0 x 1010 M-1s-1 Slope = - 2.8 x 103, so Ea = - slope x R = 23 kJ/mol

Example E7.9 The activation energy of one of the reactions in the Krebs citric acid cycle is 87 kJ/mol. What is the change in the rate constant when the temperature falls from 37oC to 15oC?

Exercise E7.10 What is the fraction of collisions that have sufficient energy for reaction if the activation energy is 50 kJ/mol and the temperature is (a) 25oC, (b) 500oC?

Exercise E7.10 f = e-Ea/RT (a) f = exp [!50 x 103 J/mol/(8.314 J/K/mol x 298 K)] . = exp [!20.18] = 1.7 x 10-9 (b) f = exp [!50 x 103 J/mol/(8.314 J/K/mol x 773 K)] . = exp [!7.78] = 4.2 x 10-4

Activated Complex Theory

In the activated complex theory, we consider two reactants approaching and their potential energy rising and reaching a maximum. At this maximum the activated complex is formed. This concept applies to reactions in solution as well as to gas-phase reactions. The solvent molecules may be involved in the activated complex.

Energy Diagrams Energy activation energy Energy H At the energy maximum the activated complex, which has a definite composition and a loose structure, is formed. However, the complex is not stable and cannot be isolated. 22

Temperature and Rate The Collision Model Goal: to explain why rates of reactions increase as concentration and temperature increase. Basic assumption of the collision model: in order for molecules to react they must collide. The greater the rate of collisions the faster the rate of reaction. The greater the concentration of molecules present, the greater the probability of collision and the faster the rate of reaction.

Temperature and Rate The Collision Model The higher the temperature, the faster the molecules will move on average, thereby increasing both the rate of collisions and the rate of reaction. Complication: known that not all molecular collisions lead to products. In fact, only a small fraction of collisions lead to product. Why? Two reasons. In order for reaction to occur the reactant molecules must collide in the correct orientation and with enough energy to form products.

Temperature and Rate Activation Energy The change in energy for the reaction is the difference in energy between CH3NC and CH3CN. The activation energy is the difference in energy between reactants, CH3NC and transition state. The rate of reaction depends on Ea. Notice that if a forward reaction is exothermic (CH3NC  CH3CN), then the reverse reaction is endothermic (CH3CN  CH3NC).

Temperature and Rate Activation Energy How does a methyl isonitrile molecule gain enough energy to overcome the activation energy barrier? From kinetic molecular theory, we know that as temperature increases, the total kinetic energy increases. We can show the fraction of molecules, f, with energy equal to or greater than Ea is where R is the gas constant (8.314 J/mol·K).

Temperature and Rate The Arrhenius Equation Arrhenius discovered that most reaction-rate data obeyed the Arrhenius equation: k is the rate constant, Ea is the activation energy, R is the gas constant (8.314 J/K-mol) and T is the temperature in K. A is called the frequency factor. A is a measure of the probability of a favorable collision. Both A and Ea are specific to a given reaction.

Temperature and Rate Determining the Activation Energy If we have a lot of data, we can determine Ea and A graphically by rearranging the Arrhenius equation: From the above equation, a plot of ln k versus 1/T should be a straight line with a slope of –Ea/R and an intercept of ln A.

Temperature and Rate

Temperature and Rate Determining the Activation Energy If we do have only two values of the rate constant, k1 and k2 say, determined at temperatures T1 and T2 respectively, then we apply the Arrhenius equation to both sets of conditions:

Dependence of reaction rate on concentration and temperature We shall now use a mathematical model, into which the rate law expression and the Arrhenius equation have been built, in order to gain a feel for the roles played by concentration, temperature and activation energy in determining the rate of a simple reaction: A(aq) = B(aq) Suppose that the reactant A is coloured blue in solution, while the product B is colourless.

Outcome of molecular collisions We shall now see how the temperature of the reaction and the orientation of the molecules can affect the likely outcome of a molecular collision.

Temperature and Rate Most reactions speed up as temperature increases. (E.g. food spoils when not refrigerated.) It is commonly observed that the rates of chemical reactions are very sensitive to temperature As a rough rule of thumb, the rates of many chemical reactions approximately double for every 10 rise in temperature.

Temperature and Rate As temperature increases, the rate constant for the reaction increases quite dramatically.