Kapita Selekta Matematika Sudaryatno Sudirham Kapita Selekta Matematika Matriks Sistem Persamaan Linier Bilangan Kompleks Permutasi dan Kombinasi Aritmatika Interval
Matriks
Pengertian Tentang Matriks Matrik adalah susunan teratur bilangan-bilangan dalam baris dan kolom yang membentuk suatu susunan persegi panjang yang kita perlakukan sebagai suatu kesatuan. Bilangan ini bisa berupa bilangan nyata atau kompleks. Kita akan melihat matriks berisi bilangan nyata. Contoh: baris kolom Nama matriks: huruf besar cetak tebal, Notasi: Contoh:
Elemen Matriks Ukuran Matriks Isi suatu matriks disebut elemen matriks Contoh: 2, 4, 1 dan 3, 0, 2 adalah elemen-emenen matriks yang membentuk baris 2, 3 dan 4, 0, dan 1, 2 adalah elemen-elemen matriks yang membentuk kolom Ukuran Matriks Secara umum suatu matrik terdiri dari b baris dan k kolom, sehingga suatu matrik akan terdiri dari bk elemen-elemen Ukuran matriks dinyatakan sebagai bk Contoh: adalah matriks berukuran 23
Nama Khusus Matriks dengan b = k disebut matriks bujur sangkar. Matriks dengan k = 1 disebut matriks kolom atau vektor kolom. Matriks dengan b = 1 disebut matriks baris atau vektor baris. Matriks dengan b k disebut matrik segi panjang Notasi nama vektor: huruf kecil cetak tebal Contoh: b = k = 3 matriks bujur sangkar 33 b = 2, k = 3 matriks segi panjang 23 k = 1 vektor kolom b = 1 vektor baris
Diagonal Utama Secara umum, matriks A dapat kita tuliskan sebagai elemen-elemen a11 …amn disebut diagonal utama
Matriks Segitiga Ada dua macam matriks segitiga yaitu matriks segitiga bawah dan matriks segitiga atas Matriks segitiga bawah adalah matriks yang elemen-elemen di atas diagonal utamanya bernilai nol. Matriks segitiga atas adalah matriks yang elemen-elemen di bawah diagonal utamanya bernilai nol. Contoh: Matriks segitiga bawah : Matriks segitiga atas :
Matriks Diagonal Matriks diagonal adalah matriks yang elemen-elemen di atas maupun di bawah diagonal utamanya bernilai nol. Contoh:
Matriks Satuan Matriks Nol Jika semua elemen pada diagonal utama adalah 1, sedang elemen yang lain adalah 0, matriks itu disebut matriks satuan. Contoh: Matriks Nol Matriks nol, 0, yang berukuran mn adalah matriks yang berukuran mn dengan semua elemennya bernilai nol.
Anak matriks atau sub-matriks Contoh: Matriks B memiliki: - Dua anak matriks 1 3 , yaitu: - Tiga anak matriks 2 1, yaitu: - Enam anak matriks 1 1 yaitu: [2] , [4] , [1] , [3] , [0] , [2]; - Enam anak matriks 1 2 yaitu: - Tiga anak matriks 22 yaitu:
Matriks dapat dipandang sebagai tersusun dari anak-anak matriks yang berupa vektor-vektor Contoh: dapat kita pandang sebagai matriks dengan anak-anak matriks berupa vektor baris Contoh yang lain: dapat kita pandang sebagai matriks dengan anak-anak matriks yang berupa vektor kolom
Operasi Matriks Kesamaan Matriks Dua matriks A dan B dikatakan sama jika dan hanya jika berukuran sama dan elemen-elemen pada posisi yang sama juga sama. Contoh: A = B Jika maka haruslah .
Matriks Negatif Negatif dari matriks berukuran mn adalah matriks berukuran mn yang diperoleh dengan mengalikan seluruh elemennya dengan faktor (1). . Contoh:
Penjumlahan Penjumlahan dua matriks hanya didefinisikan untuk matriks yang berukuran sama Jumlah dari dua matriks A dan B yang masing-masing berukuran mn adalah sebuah matriks C berukuran mn yang elemen-elemennya merupakan jumlah dari elemen-elemen matriks A dan B yang posisinya sama Contoh: Jika maka Sifat-sifat penjumlahan matriks:
Pengurangan Matriks Pengurangan matriks dapat dipandang sebagai penjumlahan dengan matriks negatif Contoh:
Perkalian Matriks Perkalian antara dua matriks A dan B yaitu C = AB hanya terdefinisikan jika banyak kolom matriks A sama dengan banyak baris matriks B. Dalam perkalian matriks, urutan hatus diperhatikan. Perkalian matriks tidak komutatif. Jadi jika matriks A berukuran mn dan B berukuran pq maka perkalian AB hanya dapat dilakukan jika n = p. Hasil kali matriks AB berupa matriks berukuran mq dengan nilai elemen pada baris ke b kolom ke k merupakan hasil kali internal (dot product) vektor baris ke b dari matriks A dan vektor kolom ke k dari matriks B
Perkalian Matriks dengan Bilangan Skalar Hasil kali suatu bilangan skalar a dengan matriks berukuran mn adalah matriks berukuran mn yang seluruh elemennya bernilai a kali. aA = Aa Contoh: Perkalian matriks dengan bilangan skalar ini mempunyai sifat-sifat sebagai berikut
Dalam perkalian internal vektor, urutan perkalian harus diperhatikan. Perkalian Internal Vektor (dot product) Perkalian internal antara dua vektor a dan b yaitu c = ab hanya terdefinisikan jika banyak kolom vektor a sama dengan banyak baris vektor b. Dalam perkalian internal vektor, urutan perkalian harus diperhatikan. Contoh: vektor baris: vektor kolom: 2 baris 2 kolom . perkalian internal dapat dilakukan Jika urutan dibalik, b : 1 kolom, a : 1 baris, perkalian juga dapat dilakukan tetapi memberikan hasil yang berbeda Perkalian matriks tidak komutatif.
Perkalian Matriks Dengan Vektor Contoh: Misalkan dan 2 baris 2 kolom dapat dikalikan Jika urutan perkalian dibalik, perkalian tidak dapat dilakukan karena b terdiri dari satu kolom sedangkan A terdiri dari dua baris.
Perkalian Dua Matriks Bujur Sangkar Contoh: dan baris = 2 kolom = 2 dapat dikalikan Matriks A kita pandang sebagai Matriks B kita pandang sebagai
Perkalian dua matriks persegi panjang Contoh: dan baris = 3 dapat dikalikan kolom = 3
Pernyataan matriks dengan anak matriks pada contoh di atas adalah sehingga , Dalam operasi perkalian matriks: matriks yang pertama kita susun dari anak matriks yang berupa vektor baris matriks yang kedua kita susun dari anak matriks yang berupa vektor kolom Jadi perkalian matriks adalah perkalian dari baris ke kolom .
Sifat-sifat perkalian matriks Asosiatif dan distributif terhadap penjumlahan b. Tidak komutatif. Jika perkalian AB maupun BA terdefinisikan, maka pada umumnya AB BA c. Hukum pembatalan tidak selalu berlaku. Jika AB = 0 tidak selalu berakibat A = 0 atau B = 0.
Putaran Matriks Putaran matriks atau transposisi dari matriks A berukuran m×n adalah suatu matriks AT yang berukuran n×m dengan kolom-kolom matriks A sebagai baris-barisnya yang berarti pula bahwa baris-baris matriks A menjadi kolom-kolom matriks AT Jika maka
Putaran Vektor Baris Dan Vektor Kolom Putaran vektor baris akan menjadi vektor kolom. Sebaliknya putaran vektor kolom akan menjadi vektor baris. Contoh:
Putaran Jumlah Dua Vektor Baris Putaran jumlah dua vektor baris sama dengan jumlah putaran masing-masing vektor Contoh: Jika maka Secara umum :
Putaran Hasil Kali Vektor Baris Dan Vektor Kolom Putaran hasil kali vektor baris dengan vektor kolom atau vektor kolom dengan vektor baris, sama dengan hasil kali putaran masing-masing dengan urutan dibalik Contoh: Jika maka
Contoh: Jika maka Secara umum :
Putaran Matriks Persegi Panjang Contoh: Jika maka Jika matriks A dinyatakan sebagai susunan dari vektor baris maka Jika matriks A dinyatakan dengan vektor kolom maka
Hal ini telah kita lihat pada putaran jumlah vektor baris. Putaran Jumlah Matriks Putaran jumlah dua matriks sama dengan jumlah putaran masing-masing matriks. Hal ini telah kita lihat pada putaran jumlah vektor baris. Jika dan maka Dengan demikian
Putaran Hasil Kali Matriks Putaran hasilkali dua matriks sama dengan hasil kali putaran masing-masing dengan urutan yang dibalik. Hal ini telah kita lihat pada putaran hasil kali vektor baris dan vektor kolom. Jika dan maka Dengan demikian maka
dikatakan bahwa matriks B adalah simetris miring. Matriks Simetris Berkaitan dengan putaran matriks, kita mengenal kesimetrisan pada matriks nyata. Matriks simetris adalah matriks yang putarannya sama dengan matriksnya sendiri. Jadi matriks A dikatakan simetris apabila Jika dikatakan bahwa matriks B adalah simetris miring. Karena dalam setiap putaran matriks nilai elemen-elemen diagonal utama tidak berubah, maka matriks simetris miring dapat terjadi jika elemen diagonal utamanya bernilai nol.
Sistem Persamaan Linier
Sistem Persamaan Linier Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui. Bentuk umum: Sistem ini mengandung m persamaan dengan n unsur yang tak diketahui yaitu x1 ….xn. Bilangan a11 …..amn disebut koefisien dari sistem itu, yang biasanya merupakan bilangan-bilangan yang diketahui. Bilangan-bilangan b1 ….bm juga merupakan bilangan-bilangan yang diketahui, bisa bernilai tidak nol maupun bernilai nol Jika seluruh b bernilai nol maka sistem persamaan tersebut disebut sistem persamaan homogen
Dari sistem persamaan linier diharapkan adanya solusi yaitu satu set nilai dari x1 …xn yang memenuhi sistem persamaan tersebut. Jika sistem ini homogen, ia mengandung solusi trivial (solusi tak penting) yaitu x1 = 0, …., xn = 0. Pertanyaan-pertanyaan yang timbul tentang solusi dari sistem persamaan ini adalah: a). Benar adakah solusi dari sistem ini ? b). Bagaimanakah cara untuk memperoleh solusi? c). Kalau sistem ini mempunyai lebih dari satu solusi, bagaimanakah himpunan solusi tersebut? d). Dalam keadaan bagaimanakah sistem ini tepat mempunyai satu solusi?
Operasi Baris Pada sistem ini kita dapat melakukan operasi-operasi yang disebut operasi baris sebagai berikut: a). Ruas kiri dan ruas kanan dari setiap persamaan dapat dikalikan dengan faktor bukan nol yang sama, tanpa mempengaruhi himpunan sistem persamaan tersebut. b). Ruas kiri dari setiap persamaan dapat dijumlahkan ke ruas kiri persamaan yang lain asal ruas kanannya juga dijumlahkan. Operasi ini tidak mengganggu keseluruhan sistem persamaan tersebut. c). Mempertukarkan tempat (urutan) persamaan tidaklah mengganggu himpunan sistem persamaan.
Penulisan Persamaan Linier Dalam Bentuk Matriks Sistem persamaan linier dapat dituliskan dalam bentuk matriks dengan memanfaatkan pengertian perkalian matriks. Bentuk itu adalah atau secara singkat dengan
Dari cara penulisan tersebut di atas, kita dapat membangun suatu matriks baru yang kita sebut matriks gandengan, yaitu dengan menggandengkan matriks A dengan b menjadi Matriks gandengan ini menyatakan sistem persamaan linier secara lengkap. Operasi-operasi baris pada sistem persamaan linier kita terjemahkan ke dalam matriks gandengan menjadi sebagai berikut a). Setiap elemen dari baris yang sama dapat dikalikan dengan faktor bukan nol yang sama. b). Satu baris boleh dijumlahkan ke baris yang lain. c). Tempat baris (urutan baris) dapat dipertukarkan.
Setiap operasi baris akan menghasilkan matriks gandengan baru. Matriks gandengan baru ini disebut sebagai setara baris dengan matriks gandengan yang lama. Operasi baris dapat kita lakukan lagi pada matriks gandengan baru dan menghasilkan matriks gandengan yang lebih baru lagi dan yang terakhir inipun setara baris dengan matriks gandengan yang lama. Dengan singkat kita katakan bahwa operasi baris menghasilkan matriks gandengan yang setara baris dengan matriks gandengan asalnya. Hal ini berarti bahwa matriks gandengan baru menyatakan sistem persamaan linier yang sama dengan matriks gandengan asalnya.
Eliminasi Gauss Eliminasi Gauss merupakan langkah-langkah sistematis untuk memecahkan sistem persamaan linier. Karena matriks gandengan merupakan pernyataan lengkap dari suatu sistem persamaan linier, maka eliminasi Gauss cukup dilakukan pada matriks gandengan ini. Contoh: Suatu sistem persamaan linier: Kita tuliskan persamaan ini dalam bentuk matriks:
Matriks gandengnya adalah: Langkah-1: Langkah pertama pada eliminasi Gauss pada matriks gandengan adalah mempertahankan baris ke-1 (disebut mengambil baris ke-1 sebagai pivot) dan membuat suku pertama baris-baris berikutnya menjadi bernilai nol. Pada matriks yang diberikan ini, langkah pertama ini dilaksanakan dengan menambahkan baris ke-1 ke baris ke-2, mengurangkan baris ke-1 dari baris ke-3 dan menambahkan baris ke-1 ke baris ke-4. Hasil operasi ini adalah
Langkah-2: Langkah kedua adalah mengambil baris ke-2 dari matriks gandeng yang baru saja kita peroleh sebagai pivot, dan membuat suku kedua baris-baris berikutnya menjadi nol. Ini kita lakukan dengan mengalikan baris ke-2 dengan 2/3 kemudian menambahkannya ke baris ke-3, dan mengurangkan baris ke-2 dari baris ke-4. Hasil operasi ini adalah
Kalikan baris ke 3 dengan 3 agar diperoleh bilangan bulat
Langkah-3: Langkah ketiga adalah mengambil baris ke-3 sebagai pivot dan membuat suku ke-3 dari baris ke-4 menjadi nol. Ini dapat kita lakukan dengan mengalikan baris ke-4 dengan 11 kemudian menambahkan kepadanya baris ke-3. Hasilnya adalah:
Hasil terakhir langkah ketiga adalah: Matriks gandeng terakhir ini menyatakan bentuk matriks: Matriks terakhir ini menyatakan sistem persamaan linier: yang dengan substitusi mundur akan memberikan:
Sistem-sistem Tertentu Dan Tidak Tertentu Sistem tertentu adalah sistem yang memberikan tepat satu solusi. Sistem tertentu terjadi jika unsur yang tak diketahui sama banyak dengan persamaannya, dan persamaan-persamaan ini tidak saling bergantungan. Jika unsur yang tak diketahui lebih banyak dari persamaannya, maka sistem itu menjadi kurang tertentu. Sistem yang kurang tertentu memberikan tidak hanya satu solusi akan tetapi banyak solusi. Jika persamaan lebih banyak dari unsur yang tak diketahui, sistem menjadi tertentu berlebihan. Sistem yang kurang tertentu selalu mempunyai solusi (dan banyak) sedangkan sistem tertentu dan tertentu berlebihan bisa memberikan solusi bisa juga tidak memberikan solusi.
Contoh Sistem Persamaan Yang Memberikan Banyak Solusi Matriks gandeng: Eliminasi Gauss:
Matriks gandengan ini menyatakan sistem persamaan : Dari persamaan ke-2 kita mendapatkan yang kemudian memberikan Karena xC tetap sembarang maka kita mendapatkan banyak solusi. Kita hanya akan memperoleh nilai xA dan xB jika kita menentukan nilai xC lebih dulu
Contoh Sistem Yang Tidak Memberikan Solusi Matriks gandeng dan eliminasi Gauss memberikan
Sistem persamaan dari matriks gandeng terakhir ini adalah Kita lihat di sini bahwa penerapan eliminasi Gauss pada akhirnya menghasilkan suatu kontradiksi yang dapat kita lihat pada baris terakhir. Hal Ini menunjukkan bahwa sistem persamaan yang sedang kita tinjau tidak memberikan solusi.
Bentuk Eselon Bentuk matriks pada langkah terakhir eliminasi Gauss, disebut bentuk eselon. Dari contoh di atas, bentuk eselon matriks koefisien dan matriks gandengannya adalah dan Secara umum bentuk eselon matriks gandengan adalah
Perhatikan bentuk ini: dan sistem yang telah tereduksi pada langkah akhir eliminasi Gauss akan berbentuk dengan , dan r n Perhatikan bentuk ini: a). Jika dan sama dengan nol atau tidak ada, maka sistem persamaan ini akan memberikan tepat satu solusi. b). Jika dan sama dengan nol atau tidak ada, maka sistem persamaan ini akan memberikan banyak solusi. c). Jika ataupun dan tidak sama dengan nol atau mempunyai nilai, maka sistem persamaan ini tidak memberikan solusi.
Jadi suatu sistem persamaan akan memberikan solusi jika sama dengan nol atau tidak ada. Pada suatu sistem persamaan yang memberikan solusi, ketunggalan solusi terjadi jika . Jika persamaan akan memberikan banyak solusi. Nilai r yang dimiliki oleh matriks gandengan ditentukan oleh banyaknya vektor baris yang bebas linier dalam matriks gandeng. Pengertian tentang kebebasan linier vektor-vektor kita bahas berikut ini.
Bebas Linier Dan Tak-bebas Linier Vektor-vektor Misalkan adalah vektor-vektor baris dari suatu matriks A =[abk]. Kita tinjau suatu persamaan vektor Apabila persamaan vektor ini terpenuhi hanya jika semua koefisien (c1 cm) bernilai nol, maka vektor-vektor baris tersebut adalah bebas linier. Jika persamaan vektor tersebut dapat dipenuhi dengan koefisien yang tidak semuanya bernilai nol (artinya setidak-tidaknya ada satu koefisien yang tidak bernilai nol) maka vektor-vektor itu tidak bebas linier.
karena koefisien-koefisien ini tidak seluruhnya bernilai nol Jika satu himpunan vektor terdiri dari vektor-vektor yang bebas linier, maka tak satupun dari vektor-vektor itu dapat dinyatakan dalam kombinasi linier dari vektor yang lain. Hal ini dapat dimengerti karena dalam persamaan tersebut di atas semua koefisien bernilai nol untuk dapat dipenuhi. Jika vektor-vektor tidak bebas linier maka nilai koefisien pada persamaan tersebut di atas (atau setidak-tidaknya sebagian tidak bernilai nol) maka satu vektor dapat dinyatakan sebagai kombinasi linier dari vektor yang lain. Vektor a1 misalnya, dapat dinyatakan sebagai karena koefisien-koefisien ini tidak seluruhnya bernilai nol
Contoh: Dua vektor baris dan Vektor a1 dan a2 adalah bebas linier karena hanya akan terjadi jika Ambil vektor ketiga Vektor a3 dan a1 tidak bebas linier karena kita dapat menyatakan a3 sebagai Vektor a1, a2 dan a3 juga tidak bebas linier karena kita dapat menyatakan a3 sebagai Akan tetapi jika kita hanya melihat a3 dan a2 saja, mereka adalah bebas linier.
Rank Matriks Bagaimana menentukan rank suatu matriks? Dengan pengertian tentang vektor yang bebas linier, didefinisikan rank matriks. Banyaknya vektor baris yang bebas linier dalam suatu matriks A = [abk] disebut rank matriks A disingkat rank A. Jika matrik B = 0 maka rank B adalah nol. Bagaimana menentukan rank suatu matriks? Operasi baris pada suatu matriks menghasilkan matriks yang setara baris dengan matriks asalnya. Hal ini berarti pula bahwa rank matriks baru sama dengan rank matriks asalnya. Dengan perkataan lain operasi baris tidak mengubah rank matriks. Jadi rank suatu matriks dapat diperoleh melalui operasi baris, yaitu sama dengan rank matriks yang dihasilkan pada langkah terakhir eliminasi Gauss. Bentuk eselon matriks yang diperoleh pada langkah terakhir eliminasi Gauss, mengandung vektor-vektor baris yang bebas linier karena vektor yang tak bebas linier telah tereliminasi.
Contoh: Bentuk eselon matriks koefisien dan matriks gandengannya dari sistem persamaan yang memberikan solusi tunggal dalam contoh, adalah dan Dalam kasus ini rank matriks koefisien sama dengan rank matriks gandengan, yaitu 4. Selain dari pada itu rank matriks sama dengan banyaknya unsur yang tak diketahui yaitu 4
Contoh: Bentuk eselon matriks koefisien dan matriks gandengannya dari sistem persamaan yang memberikan banyak solusi, adalah dan Dalam kasus ini rank matriks koefisien sama dengan rank matriks gandengan, yaitu 2. Akan tetapi rank matriks ini lebih kecil dari banyaknya unsur yang tak diketahui.
Contoh: Bentuk eselon matriks koefisien dan matriks gandengannya dari sistem persamaan yang tidak memberikan solusi, adalah dan Dalam kasus ini rank matriks koefisien tidak sama dengan rank matriks gandengan. Rank matriks koefisien adalah 2 sedangkan rank matriks gandengannya adalah 3. Ketidak samaan rank dari kedua matriks ini menunjukkan tidak adanya solusi.
Apa yang kita amati dalam contoh-contoh di atas ternyata berlaku umum. a). agar suatu sistem persamaan memberikan solusi maka rank matriks koefisien harus sama dengan rank matriks gandengannya; b). agar sistem persamaan memberikan solusi tunggal maka rank matriks koefisien harus sama dengan banyaknya unsur yang tak diketahui; c). jika rank matriks koefisien lebih kecil dari banyaknya unsur yang tak diketahui maka akan diperoleh banyak solusi.
Sistem Persamaan Homogen Sistem persamaan disebut homogen apabila nilai b di ruas kanan dari persamaan sistem bernilai nol. Jika tidak demikian maka sistem itu disebut tak homogen. Sistem persamaan homogen berbentuk Bentuk matriks gandengan sistem ini adalah
Eliminasi Gauss pada sistem demikian ini akan menghasilkan Jika rank matriks gandengan terakhir ini sama dengan banyaknya unsur yang tak diketahui, r = n, sistem persamaan akhirnya akan berbentuk Dari sini terlihat bahwa dan substitusi mundur akhirnya memberikan semua x bernilai nol. Ini merupakan solusi trivial dan solusi trivial ini diakibatkan oleh kenyataan bahwa r = n. Solusi tak trivial hanya akan diperoleh jika .
Sistem Persamaan Homogen Yang Hanya Memberikan Solusi Trivial Contoh: Matriks gandengan sistem ini dan hasil eliminasi Gauss-nya adalah Rank matrik koefisien adalah 4; banyaknya unsur yang tak diketahui juga 4. Sistem persamaan liniernya menjadi yang akhirnya memberikan Inilah solusi trivial yang dihasilkan jika terjadi keadaan
Sistem Persamaan Yang Memberikan Solusi Tak Trivial Contoh: Matriks gandengan dan hasil eliminasinya adalah eliminasi Gauss: Sistem persamaan menjadi
Jika kita mengambil nilai maka akan diperoleh Solusi ini membentuk vektor solusi . yang jika matriks koefisiennya digandaawalkan akan menghasilkan vektor nol b = 0
Jika kita menetapkan nilai xD yang lain, misalnya akan diperoleh vektor solusi yang lain, yaitu Penggandaawalan matriks koefisiennya juga akan menghasilkan vektor nol Vektor solusi x2 ini merupakan perkalian solusi sebelumnya dengan bilangan skalar (dalam hal ini 33), yang sesungguhnya bisa bernilai sembarang. Secara umum vektor solusi berbentuk dengan c adalah skalar sembarang
Vektor solusi yang lain lagi dapat kita peroleh dengan menjumlahkan vektor-vektor solusi, misalnya x1 dan x2. Jelas bahwa x3 juga merupakan solusi karena jika digandaawalkan akan memberikan hasil vektor nol. Jadi secara umum vektor solusi dapat juga diperoleh dengan menjumlahkan vektor solusi yang kita nyatakan sebagai
Contoh di atas memperlihatkan bahwa solusi dari sistem persamaan homogen membentuk vektor-vektor yang seluruhnya dapat diperoleh melalui perkalian salah satu vektor solusi dengan skalar serta penjumlahan vektor-vektor solusi. Kita katakan bahwa solusi dari sistem persamaan homogen membentuk suatu ruang vektor. Dalam sistem persamaan homogen yang sedang kita tinjau ini, ruang vektor yang terbentuk adalah ber-dimensi satu. Perhatikan bahwa setiap vektor solusi merupakan hasilkali skalar dengan vektor x1 . Jika kita perhatikan lebih lanjut ruang vektor yang terbentuk oleh vektor solusi akan berdimensi (n r), yaitu selisih antara banyaknya unsur yang tak diketahui dengan rank matriks koefisien. Dalam kasus yang sedang kita tinjau ini, banyaknya unsur yang tak diketahui adalah 3 sedangkan rank matriks koefisien adalah 2.
Sistem Persamaan Dengan Vektor Solusi Berdimensi 2 Contoh: Matriks gandengan dan hasil eliminasi Gauss adalah Rank matriks ini adalah 2 sedangkan banyaknya unsur tak diketahui 4. Sistem persamaan menjadi
Jika kita memberi nilai kita akan mendapatkan adalah salah satu vektor solusi Ganda-awal matriks koefisien dengan vektor ini akan memberikan vektor .
Jika Ax1 = 0, maka perkalian dengan skalar k akan memberikan dan Dengan kata lain, jika x1 adalah vektor solusi, maka , adalah juga vektor-vektor solusi dan sebagaimana kita tahu vektor-vektor ini kita peroleh dengan memberi nilai .
Jika akan kita peroleh dan yang membentuk vektor solusi Dengan skalar l sembarang kita akan memperoleh vektor-vektor solusi yang lain seperti Secara keseluruhan maka vektor-vektor solusi kita adalah Inilah vektor-vektor solusi yang membentuk ruang vektor berdimensi 2.
Dari dua contoh terakhir ini terbukti teorema yang menyatakan bahwa solusi sistem persamaan linier homogen dengan n unsur tak diketahui dan rank matriks koefisien r akan membentuk ruang vektor berdimensi (n r).
Kebalikan Matriks Dan Metoda Eliminasi Gauss-Jordan Pengertin tentang kebalikan matriks (inversi matriks) erat kaitannya dengan pemecahan sistem persamaan linier. Namun demikian pengertian ini khusus ditujukan untuk matriks bujur sangkar n n. Kebalikan matriks A (inversi matriks A) didefinisikan sebagai matriks yang jika digandaawalkan ke matriks A akan menghasilkan matriks identitas. Kebalikan matriks A dituliskan sebagai A1 sehingga definisi ini memberikan relasi Jika A berukuran n n maka A1 juga berukuran n n dan demikian pula matriks identitasnya.
Tidak semua matriks bujur sangkar memiliki kebalikan; jika A memiliki kebalikan maka A disebut matriks tak singular dan jika tak memiliki kebalikan disebut matriks singular. Jika A adalah matriks tak singular maka hanya ada satu kebalikan A; dengan kata lain kebalikan matriks adalah unik atau bersifat tunggal. Hal ini mudah dimengerti sebab jika A mempunyai dua kebalikan, misalnya P dan Q, maka AP = I =PA dan juga AQ = I =QA, dan hal ini hanya mungkin terjadi jika P = Q.
Berbekal pengertian kebalikan matriks, kita akan meninjau persamaan matriks dari suatu sistem persamaan linier tak homogen, yaitu Jika kita menggandaawalkan kebalikan matriks A ke ruas kiri dan kanan persamaan ini, akan kita peroleh Persamaan ini menunjukkan bahwa kita dapat memperoleh vektor solusi x dari sistem persamaan linier jika kebalikan matriks koefisien A ada, atau jika matriks A tak singular. Jadi persoalan kita sekarang adalah bagaimana mengetahui apakah matriks A singular atau tak singular dan bagaimana mencari kebalikan matriks A jika ia tak singular.
matriks A yang berukuran n n tak singular jika rank A = n Dari pembahasan sebelumnya kita mengetahui bahwa jika matriks koefisien A adalah matriks bujur sangkar n n, maka solusi tunggal akan kita peroleh jika rank A sama dengan n. Hal ini berarti bahwa vektor x pada persamaan di atas dapat kita peroleh jika rank A1 sama dengan n. Dengan perkataan lain matriks A yang berukuran n n tak singular jika rank A = n dan akan singular jika rank A < n. Mencari kebalikan matriks A dapat kita lakukan dengan cara eliminasi Gauss-Jordan. Metoda ini didasari oleh persamaan Ax = b. Jika X adalah kebalikan matriks A maka
dengan U berbentuk matriks segitiga atas. Untuk mencari X kita bentuk matriks gandengan Jika kita lakukan eliminasi Gauss pada matriks gandengan ini berubah menjadi dengan U berbentuk matriks segitiga atas. Eliminasi Gauss-Jordan selanjutnya beroperasi pada yaitu dengan mengeliminasi unsur-unsur segitiga atas pada U sehingga U berbentuk matriks identitas I. Langkah akhir ini akan menghasilkan
Contoh: Kita akan mencari kebalikan dari matriks Kita bentuk matriks gandengan Kita lakukan eliminasi Gauss pada matriks gandengan ini
Kemudian kita lakukan eliminasi Gauss-Jordan
Hasil terakhir ini memberikan kebalikan matriks A, yaitu Dengan demikian untuk suatu sistem persamaan linier tak homogen yang persamaan matriksnya vektor solusinya adalah
Kebalikan Matriks Diagonal Kebalikan matriks diagonal dapat dengan mudah kita peroleh. Kebalikan Dari Kebalikan Matriks Kebalikan dari kebalikan matriks adalah matriks itu sendiri.
Kebalikan Dari Perkalian Matriks Kebalikan dari perkalian dua matriks adalah perkalian dari kebalikan masing-masing matriks dengan urutan dibalik. Hal ini dapat dibuktikan sebagai berikut
Bilangan Kompleks
Definisi bagian nyata (real part) dari z Dalam buku Erwin Kreyszig kita baca definisi bilangan bilangan kompleks sebagai berikut Bilangan kompleks z ialah suatu pasangan terurut (x,y) dari bilangan nyata x, y, yang kita tuliskan bagian nyata (real part) dari z bagian khayal (imaginary part) dari z kita tuliskan Kita akan mencoba memahami definisi ini secara grafis, mulai dari pengertian tentang bilangan nyata.
Bilangan Nyata Kita mengenal bilangan nyata bulat seperti 1, 2, 3 dan seterusnya; bilangan nyata pecahan ¼, ½, ¾ dan seterusnya, serta bilangan nyata yang hanya dapat di angankan seperti . Walaupun hanya dapat diangankan, bilangan ini tetap nyata, nilainya adalah 3,14……., dengan angka desimal yang tak diketahui ujungnya. Secara grafis, bilangan nyata dapat digambarkan posisinya di suatu sumbu yang disebut sumbu nyata, | | | | | | | | -2 -1 0 1 2 3 4 5
tidak ada nilai y yang nyata untuk x negatif Tinjaulah suatu fungsi tidak ada nilai y yang nyata untuk x negatif namun untuk x yang negatif dapat didefinisikan suatu bilangan imajiner (khayal)
Jika bilangan nyata 1 menjadi satuan dari bilangan nyata, misalnya maka bilangan imajiner j = 1 menjadi satuan dari bilangan imajiner, misalnya
Pernyataan Bilangan Kompleks Satu bilangan kompleks z merupakan jumlah dari komponen nyata dan komponen imajiner dan dituliskan bilangan kompleks bagian nyata bagian imajiner
Bilangan kompleks dapat digambarkan di bidang kompleks yang dibatasi oleh sumbu nyata (diberi tanda Re) dan sumbu imajiner (diberi tanda Im) yang saling tegaklurus satu sama lain setiap titik di bidang kompleks menunjukkan posisi bilangan-kompleks (x,,y) dengan x adalah komponen nyata dan y adalah komponen imajiner-nya
Diagram Argand Re Im disebut modulus jb a disebut argumen
CONTOH Suatu bilangan kompleks dinyatakan sebagai Sudut dengan sumbu nyata adalah Pernyataan z1 dapat kita tuliskan
CONTOH Suatu bilangan kompleks dinyatakan sebagai Pernyataan ini dapat kita tuliskan
Kesamaan Bilangan Kompleks merupakan nilai mutlak Modulus Dua atau lebih bilangan kompleks bisa saja memiliki nilai yang sama akan tetapi dengan sudut yang berbeda; atau sebaliknya mempunyai nilai sama akan tetapi memiliki yang berbeda. Dua bilangan kompleks dikatakan sama besar jika mereka mempunyai baik maupun yang sama besar. Dengan kata lain, mereka memiliki bagian nyata dan bagian imajiner yang sama besar..
Negatif dari Bilangan Kompleks Nilai negatif dari suatu bilangan kompleks adalah nilai negative dari kedua komponennya Jika maka Re Im a jb
CONTOH Jika maka Sudut dengan sumbu nyata z1 dapat dinyatakan sebagai
Konjugat Bilangan Kompleks Konjugat dari suatu bilangan kompleks z adalah bilangan kompleks z* yang memiliki komponen nyata sama dengan z tetapi komponen imajinernya adalah negatif dari komponen imajiner z. Re Im
Sudut dengan sumbu nyata CONTOH: maka Jika Re Im Sudut dengan sumbu nyata z dapat dinyatakan sebagai
CONTOH: Re Im Jika maka Re Im Jika maka
Operasi-Operasi Aljabar
Penjumlahan dan Pengurangan Bilangan Kompleks Hasil penjumlahan dua bilangan kompleks merupakan bilangan kompleks yang komponen nyatanya merupakan jumlah komponen nyata dan komponen imajinernya juga merupakan jumlah komponen imajiner. Hasil selisih dua bilangan kompleks adalah bilangan kompleks yang komponen nyatanya merupakan selisih komponen nyata dan komponen imajinernya juga merupakan selisih komponen imajiner.
CONTOH: Diketahui
Perkalian Bilangan Kompleks Perkalian dua bilangan kompleks dilaksanakan seperti halnya kita melakukan perkalian jumlah dua bilangan, yaitu dengan malakukan perkalian komponen per komponen Jika Perhatikan:
CONTOH: CONTOH:
Pembagian Bilangan Kompleks Hasil bagi suatu pembagian tidak akan berubah jika pembagian itu dikalikan dengan 1 CONTOH:
Pernyataan Bilangan Kompleks Bentuk Polar
Fungsi Eksponensial Kompleks Jika x adalah bilangan nyata maka fungsi ekponensial merupakan fungsi ekponensial nyata; y memiliki nilai nyata Jika z adalah bilangan kompleks fungsi eksponensial kompleks didefinisikan Melalui identitas Euler fungsi exponensial kompleks dapat kita tuliskan
Representasi bilangan kompleks dalam bentuk polar adalah Im CONTOH: Misalkan suatu bilangan kompleks z = 10 e j0,5 Modulus bilangan kompleks ini adalah |z| = 10 dan argumennya z = 0,5 rad Re Im Bentuk sudut sikunya adalah:
Misalkan suatu bilangan kompleks z = 3+ j4 CONTOH: Misalkan suatu bilangan kompleks z = 3+ j4 Modulus Argumen Representasi polar z = 5e j0,93 Re Im
CONTOH: Misalkan Modulus Argumen tidak bernilai tunggal Di sini kita harus memilih = rad karena komponen imajiner 0 sedangkan komponen nyata 2 Re Im
komponen nyata: 0 komponen imajiner: 2 . CONTOH Misalkan Modulus Argumen komponen nyata: 0 komponen imajiner: 2 Representasi polar adalah Re Im
Manfaat Bentuk Polar
Perkalian dan Pembagian Bilangan Kompleks Representasi polar dari bilangan kompleks mempermudah operasi perkalian dan pembagian. CONTOH: Misalkan z1 = 10 e j0,5 dan z2 = 5 e j0,4
argumen konjugat berlawanan dengan argumen bilangan kompleks asalnya Konjugat Kompleks argumen konjugat berlawanan dengan argumen bilangan kompleks asalnya Re Im Relasi-relasi antara suatu bilangan kompleks dengan konjugat bilangan kompleks lainnya adalah sebagai berikut
CONTOH: Misalkan
Permutasi
Permutasi adalah banyaknya pengelompokan sejumlah tertentu komponen yang diambil dari sejumlah komponen yang tersedia; dalam setiap kelompok urutan komponen diperhatikan Misalkan tersedia 2 huruf yaitu A dan B dan kita diminta untuk membuat kelompok yang setiap kelompoknya terdiri dari 2 huruf Kelompok yang yang bisa kita bentuk adalah diperoleh 2 kelompok Ada dua kemungkinan huruf yang bisa menempati posisi pertama yaitu A atau B Jika A sudah menempati posisi pertama, maka hanya satu kemungkinan yang bisa menempati posisi kedua yaitu B Jika B sudah menempati posisi pertama, maka hanya satu kemungkinan yang bisa menempati posisi kedua yaitu A
Misalkan tersedia 3 huruf yaitu A, B, dan C Kelompok yang setiap kelompoknya terdiri dari 3 huruf adalah: diperoleh 6 kelompok Jika salah satu komponen sudah menempati posisi pertama tinggal 2 kemungkinan komponen yang dapat menempati posisi kedua Jika salah satu komponen sudah menempati posisi pertama dan salah satu dari 2 yang tersisa sudah menempati posisi kedua maka hanya tinggal 1 kemungkinan komponen yang dapat menempati posisi terakhir yaitu posisi ketiga Jadi jumlah kelompok yang bisa diperoleh adalah Jumlah kemungkinan komponen yang menempati posisi pertama Jumlah kemungkinan komponen yang menempati posisi ketiga Jumlah kemungkinan komponen yang menempati posisi kedua
jumlah kelompok yang mungkin dibentuk Dari 4 huruf yaitu A, B, C dan D kita dapat membuat kelompok yang setiap kelompoknya terdiri dari 4 huruf Kemungkinan penempatan posisi pertama : 4 Kemungkinan penempatan posisi kedua : 3 Kemungkinan penempatan posisi ketiga : 2 Kemungkinan penempatan posisi keempat : 1 jumlah kelompok yang mungkin dibentuk 4321=24 kelompok yaitu: ABCD BACD CDAB DABC ABDC BADC CDBA DACB ACBD BCAD CABD DBCA ACDB BCDA CADB DBAC ADCB BDAC CBAD DCAB ADBC BDCA CBDA DCBA ada 24 kelompok
Secara umum jumlah kelompok yang dapat kita bangun dari n komponen yang setiap kelompok terdiri dari n komponen adalah Kita katakan bahwa permutasi dari n komponen adalah n! dan kita tuliskan Kita baca : n fakultet Namun dari n komponen tidak hanya dapat dikelompokkan dengan setiap kelompok terdiri dari n komponen, tetapi juga dapat dikelompokkan dalam kelompok yang masing-masing kelompok terdiri dari k komponen dimana k < n Kita sebut permutasi k dari n komponen dan kita tuliskan
Tidak ada komponen yang menempati posisi berikutnya. Contoh: Permutasi dua-dua dari empat komponen adalah Di sini kita hanya mengalikan kemungkinan penempatan pada posisi pertama dan ketiga saja yaitu 4 dan 3. Tidak ada komponen yang menempati posisi berikutnya. Penghitungan 4P2 dalam contoh di atas dapat kita tuliskan
Secara Umum: Contoh: Contoh:
Kombinasi
Kombinasi merupakan pengelompokan sejumlah komponen yang mungkin dilakukan tanpa mempedulikan urutannya Jika dari tiga huruf A, B, dan C, dapat 6 hasil permutasi yaitu ABC, ACB, BCA, BAC, CAB, dan CBA namun hanya ada satu kombinasi dari tiga huruf tersebut yaitu ABC karena dalam kombinasi urutan posisi ketiga huruf itu tidak diperhatikan ABC = ACB = BCA = BAC = CAB = CBA
dibagi dengan permutasi k Oleh karena itu kombinasi k dari sejumlah n komponen haruslah sama dengan jumlah permutasi nPk dibagi dengan permutasi k Kombinasi k dari sejumlah n komponen dituliskan sebagai nCk Jadi
Berapakah kombinasi dua-dua dari empat huruf Contoh: Berapakah kombinasi dua-dua dari empat huruf A, B, C, dan D Jawab: yaitu: AB AC AD BC BD CD
Contoh Aplikasi Distribusi Maxwell-Boltzman Distribusi Fermi-Dirac
Setiap tingkat energi dapat ditempati oleh elektron mana saja Distribusi Maxwell-Boltzman Energi elektron dalam padatan terdistribusi pada tingkat-tingkat energi yang diskrit; kita sebut Setiap tingkat energi dapat ditempati oleh elektron mana saja dan setiap elektron memiliki probabilitas yang sama untuk menempati suatu tingkat energi
dan kita misalkan bahwa distribusi yang terbentuk adalah Jika N adalah jumlah keseluruhan elektron yang harus terdistribusi dalam tingkat-tingkat energi yang ada dan kita misalkan bahwa distribusi yang terbentuk adalah maka jumlah cara penempatan elektron di E1 merupakan permutasi n1 dari N yaitu
Jumlah cara penempatan elektron di E2 merupakan permutasi n2 dari (Nn1) karena sejumlah n1 sudah menempati E1 Jumlah cara penempatan elektron di E3 merupakan permutasi n3 dari (Nn1n2) karena sejumlah (n1+n2) sudah menempati E1 dan E2 dst.
Demikian pula penempatan elektron di E2, E3, dst. Setelah n1 menempati E1 maka urutan penempatan elektron di E1 ini sudah tidak berarti lagi karena kita tidak dapat membedakan antara satu elektron dengan elektron yang lain Jadi jumlah cara penempatan elektron di E1 adalah kombinasi n1 dari N yaitu Demikian pula penempatan elektron di E2, E3, dst. dst.
Inilah probabilitas distribusi dalam statistik Maxwell-Boltzmann Namun setiap tingkat energi juga memiliki probabilitas untuk ditempati, yang disebut intrinksic probability Misalkan intrinksic probability tingkat E1 adalah g1, E2 adalah g2, dst. maka probabilitas tingkat-tingkat energi adalah Dengan demikian maka probabilitas untuk terjadinya distribusi elektron seperti di atas adalah: Inilah probabilitas distribusi dalam statistik Maxwell-Boltzmann
Pembaca dapat melihat proses perhitungan lanjutan ini di buku-e Upaya selanjutnya adalah mencari bentuk distribusi yang paling mungkin terjadi Namun hal ini tidak kita bahas di sini, karena contoh ini hanya ingin menunjukkan aplikasi dari pengertian permutasi dan kombinasi Pembaca dapat melihat proses perhitungan lanjutan ini di buku-e “Mengenal Sifat Material”
Jumlah elektron pada tingkat energi Ei temperatur Sebagai informasi, probabilitas F ini mengantarkan kita pada formulasi distribusi Maxwell-Boltzmann Jumlah elektron pada tingkat energi Ei temperatur konstanta Boltzmann tingkat energi ke-i probabilitas intrinksik tingkat energi ke-i fungsi partisi
Distribusi Fermi-Dirac Energi elektron dalam terdistribusi pada tingkat-tingkat energi yang diskrit, misalnya kita sebut Setiap tingkat energi mengandung sejumlah tertentu status kuantum dan tidak lebih dari dua elektron berada pada status yang sama. Oleh karena itu jumlah status di tiap tingkat energi menjadi probabilitas intrinksik tingkat energi yang bersangkutan Yang berarti menunjukkan jumlah elektron yang mungkin berada di suatu tingkat energi
Jika N adalah jumlah keseluruhan elektron yang harus terdistribusi dalam tingkat-tingkat energi yang ada, yaitu
Sehingga probabilitas untuk terjadinya distribusi elektron adalah: Maka banyaknya cara penempatan elektron di tingkat E1, E2, E3 dst. merupakan kombinasi C1, C2, C3 dst dst. Dengan probabilitas intrinksik g1, g2, g3 maka jumlah cara untuk menempatkan elektron di tingkat E1, E2, E3 dst. menjadi dst. Sehingga probabilitas untuk terjadinya distribusi elektron adalah: Inilah probabilitas distribusi dalam statistik Fermi-Dirac namun kita tidak membicarakan lebih lanjut karena proses selanjutnya tidak menyangkut permutasi dan kombinasi
Pembaca dapat melihat proses perhitungang lanjutan ini di buku-e Upaya selanjutnya adalah mencari bentuk distribusi yang paling mungkin terjadi Namun hal ini tidak kita bahas di sini, karena contoh ini hanya ingin menunjukkan aplikasi dari pengertian permutasi dan kombinasi Pembaca dapat melihat proses perhitungang lanjutan ini di buku-e “Mengenal Sifat Material”, Bab-9 yang dapat diunduh di situs ini juga
Sebagai informasi, probabilitas F ini mengantarkan kita pada formulasi distribusi Fermi Dirac Jika kita perhatikan persamaan ini untuk T 0 Jadi jika T = 0 maka ni = gi yang berarti semua tingkat energi sampai EF terisi penuh dan tidak terdapat elektron di atas EF EF inilah yang disebut tingkat energi Fermi.
Aritmatika Interval
Dalam keadaan demikian kita dihadapkan pada operasi-operasi interval. Pengantar Dalam praktik rekayasa dijumpai operasi matematika yang melibatkan bilangan-bilangan dalam interval. Dalam keadaan demikian kita dihadapkan pada operasi-operasi interval.
Cakupan Bahasan Pengertian-Pengertian Interval Operasi-Operasi Aritmatika Interval Sifat-Sifat Aritmatika Interval
Pengertian-Pengertian Interval
Bilangan nyata yang biasa kita kita operasikan adalah bernilai tunggal, baik bilangan bulat maupun pecahan Dalam analisis interval, bilangan yang kita operasikan memiliki nilai yang berada dalam suatu interval tertutup *) Dengan demikian bilangan yang kita hadapi sesungguhnya merupakan kumpulan bilangan Contoh: Bilangan dalam interval 90 dan 110 adalah kumpulan bilangan yang bernilai antara 90 dan 110 termasuk 90 dan 110 itu sendiri (interval tertutup). *) Lihat pula “Fungsi dan Grafik”
menunjukkan kumpulan yang kita tinjau Suatu kumpulan dinyatakan dengan tanda kurung { }. Secara umum, suatu kumpulan kita nyatakan sebagai menunjukkan kumpulan yang kita tinjau menunjukkan syarat-syarat yang harus dipenuhi untuk menentukan apakah x benar merupakan elemen dari S atau tidak menunjukkan sembarang elemen dari S
R adalah kumpulan dari semua bilangan nyata Contoh R adalah kumpulan dari semua bilangan nyata
Secara umum, kumpulan bilangan nyata X dalam interval antara a dan b dengan a < b dan a maupun b terletak antara dan + kita tuliskan Penulisan ini tentu agak merepotkan dalam melakukan operasi-operasi interval Kita memerlukan cara penulisan yang lebih sederhana agar mudah melakukan operasi interval. Dalam operasi interval, sesungguhnya kita akan berhubungan hanya dengan batas-batas interval. Oleh karena itu kita akan menggunakan cara penulisan bilangan interval yang lebih sederhana, dengan hanya menyatakan batas-batas intervalnya.
Suatu interval X yang memiliki batas bawah (nilai minimum) x dan batas atas (nilai maksimum) kita tuliskan kita gunakan tanda kurung [ ] untuk mengakomodasi batas-batas interval. Dalam penjelasan selanjutnya kita akan menggambarkan interval pada garis sumbu nyata sebagai berikut ( x ) interval X batas bawah batas atas
Suatu interval mengalami degenerasi jika dan disebut degenerate interval; interval yang tidak mengalami degenerasi disebut nondegenerate. Dengan pengertian ini maka suatu bilangan nyata bernilai tunggal dapat dikatakan merupakan keadaan khusus dari suatu interval. Atau sebaliknya suatu interval merupakan pernyataan umum (generalisasi) suatu bilangan nyata.
Lebar Interval Lebar suatu interval X adalah bilangan nyata Contoh: ( ) x w(X)
Titik Tengah Titik tengah atau mid point suatu interval X adalah Contoh: titik tengah Radius Setengah dari lebar interval disebut sebagai radius interval Contoh: radius interval X adalah w(X)/2 = (104)/2 = 3.
Dalam contoh ini w(X) < w(Y) Kesamaan Dua interval dikatakan sama jika dan hanya jika mempunyai batas-batas yang sama. Jika dan maka jika dan hanya jika Urutan Interval X dikatakan lebih kecil dari Y jika dan hanya jika batas maksimum X lebih kecil dari batas minimum Y, Contoh X = {6, 10} dan Y = {13, 18} X < Y. Dalam contoh ini w(X) < w(Y) ( x ) X Y
Nilai Absolut Nilai absolut suatu interval X didefinisikan sebagai maksimum dari absolut batas-batasnya Contoh X = {8, 4}
Jarak Jarak antara dua interval didefinisikan sebagai maksimum dari selisih batas-batas keduanya Contoh X = {2,6}, Y = {8,18} Di sini ( ) x X Y
Suatu interval X disebut simetris jika Contoh: X = {5, 5} ( x ) X Interval simetris mengandung elemen bernilai 0. Tetapi tidak berarti mempunyai lebar 0. Ia bukan degenerate interval.
Irisan antara interval X dan interval Y adalah Karena interval dapat dipandang sebagai kumpulan maka kita mengenal irisan interval. Irisan antara interval X dan interval Y adalah Contoh: X = {2, 9} dan Y = {6, 18} ( x ) X Y Irisan dua interval juga merupakan sebuah interval Irisan X dan Y kosong atau = Ø jika X < Y atau Y < X.
Gabungan antara interval X dan Y adalah Contoh: X = [2, 9], Y = [6, 18] ( x ) X Y Jika irisan dari X dan Y tidak kosong maka gabungan keduanya juga merupakan sebuah interval. Akan tetapi jika irisan antara keduanya kosong maka gabungan dua interval itu tidak merupakan sebuah interval karena sesungguhnya gabungan itu akan terdiri dari dua interval yang berbeda.
Interval X berada di dalam interval Y jika dan hanya jika Inklusi Interval X berada di dalam interval Y jika dan hanya jika atau jika dan hanya jika Contoh: a). X = {5, 12} dan Y = {4, 16} ( x ) X Y b). X ={5, 2} dan Y = {7, 7} ( x ) X Y
Operasi-Operasi Aritmatika
Kita dapat membedakan interval dalam tiga katagori, yaitu: Interval yang seluruh elemennya bernilai positif, yang kita sebut interval positif. Interval yang seluruh elemennya bernilai negatif, yang kita sebut interval negatif. Interval yang mengandung elemen bernilai negatif maupun positif termasuk nol. Degenerasi interval positif membentuk bilangan positif, degenerasi interval negatif membentuk bilangan negatif, sedangkan degenerasi interval yang mengandung nol bisa membentuk bilangan negatif, atau positif, atau nol.
Penjumlahan dan Pengurangan
Penjumlahan Misalkan X dan Y adalah dua interval. Jumlah dari X dan Y didefinisikan sebagai Elemen dari jumlah interval adalah jumlah elemen masing-masing interval Oleh karena itu maka batas bawah dari hasil penjumlahan adalah jumlah dari batas bawah, dan batas atas dari hasil penjumlahan adalah jumlah dari batas atas Dengan demikian maka penjumlahan dua interval hanya melibatkan batas-batas interval saja.
X dan Y adalah dua interval yang terpisah. Jika dan , maka Jumlah interval juga merupakan interval. ( x ) X Y X+Y tidak merupakan sebuah interval karena X < Y. X dan Y adalah dua interval yang terpisah. Penjumlahan berbeda dengan penggabungan. Penggabungan dua interval tidak selalu menghasilkan suatu interval.
X + Y = [2+9, 6+14]=[11, 20] Contoh: X = {2, 6} dan Y = {9, 14} Penjumlahan dua interval selalu dapat dilakukan. Jika kedua interval yang dijumlahkan itu degenerate maka kita mendapatkan penjumlahan yang biasa kita lakukan dengan bilangan biasa. Perbedaan penjumlahan dan gabungan Contoh: X = [2, 4], Y = [3, 6] ( x ) X Y z
Negatif Suatu Interval Negatif Suatu Interval. Negatif dari suatu interval didefinisikan sebagai yang dapat kita tuliskan ( x ) X x X Batas atas X adalah Batas bawah X adalah x
Contoh: a). X = [2, 6] X = [6, 2] ( x ) X x X b). X = [2, 6] X = [6, 2] ( x ) X x X
X Y = [2, 6] [7, 12] = [2 12, 6 7] = [10, 1] Pengurangan Dengan pengertian negatif interval tersebut di atas maka pengurangan interval X oleh interval Y menjadi penjumlahan interval X dengan negatif interval Y Contoh: X = [2, 6] dan Y = [7, 12] X Y = [2, 6] [7, 12] = [2 12, 6 7] = [10, 1] ( x ) X Y XY Dalam contoh ini X < Y dan hasil pengurangan X Y merupakan interval negatif.
Perkalian dan Pembagian
Perkalian dua interval X dan Y didefinisikan sebagai Perkalian Interval Perkalian dua interval X dan Y didefinisikan sebagai yang dapat dituliskan Dalam formulasi ini diperlukan empat kali perkalian batas masing-masing interval untuk menentukan batas bawah maupaun batas atas dari interval hasil kali. Namun pekerjaan akan sedikit sedikit menjadi ringan jika kita memperhatikan posisi elemen masing-masing interval pada sumbu bilangan nyata
Pada interval X selalu dipenuhi relasi maka dengan memperhatikan posisi kita akan mengetahui posisi jika maka Demikian juga pada interval Y jika maka
Karena ada tiga katagori interval, maka ada sembilan kemungkinan perkalian interval, yaitu: interval positif kali interval positif interval mengandung nol kali interval positif dan sebaliknya interval negatif kali interval positif dan sebaliknya interval negatif kali interval mengandung nol dan sebaliknya interval negatif kali interval negatif perkalian dua interval yang keduanya mengandung nol
X Y X Y X Y X Y Sembilan situasi yang mungkin terjadi adalah: ( ) x ( ) x X Y 1). 2). ( ) x X Y 3). ( ) x X Y 4). ( ) x X Y
5). ( ) x X Y 6). ( ) Y X 7). ( ) Y X ( ) Y X 8). 9). ( ) Y X
X Y Contoh dan Penjelasan ( ) x 1). Formula umum: ( ) x X Y 1). Nilai terkecil yang bisa dicapai Nilai terbesar yang bisa dicapai Formula umum: Perkalian dua interval positif akan menghasilkan interval positif. Batas atas interval hasilkali adalah hasilkali kedua batas atas sedang batas bawahnya adalah hasil kali kedua batas bawah. Jika kedua interval degenerate, maka kita mempunyai perkalian bilangan biasa: perkalian dua bilangan positif yang memberikan hasil bilangan positif.
X Y Contoh dan Penjelasan 2). ( ) x Formula umum: ( ) x X Y Nilai terkecil yang bisa dicapai Nilai terbesar yang bisa dicapai Formula umum: Salah satu interval mengandung nol dan memiliki batas bawah negatif. Oleh karena itu batas bawah interval hasilkali adalah batas bawah interval yang mengandung nol dan batas atas interval yang lain (yang positif). Batas atas interval hasilkali adalah hasil kali dari kedua batas atas karena kedua batas atas tersebut positif.
X Y Contoh dan Penjelasan 3). ( ) x Formula umum: ( ) x X Y Nilai terbesar yang bisa dicapai Nilai terkecil yang bisa dicapai Formula umum: Karena salah satu interval adalah interval negatif dan yang lain interval positif, maka batas bawah interval hasilkali adalah hasilkali batas bawah interval negatif dan batas atas interval positif. Batas atasnya adalah kasilkali batas atas interval negatif dan batas bawah interval positif
X Y Contoh dan Penjelasan 4). ( ) x Formula umum: ( ) x X Y Nilai terkecil yang bisa dicapai Nilai terbesar yang bisa dicapai Formula umum: Salah satu interval adalah interval negatif sedangkan interval yang lain mengandung nol. Batas bawah interval hasilkali adalah hasil kali batas bawah interval negatif dan batas atas (positif) interval yang mengandung nol. Batas atasnya adalah hasilkali batas bawah interval negatif dan batas bawah (yang bernilai negatif) dari interval yang mengandung nol.
Batas bawah interval hasilkali adalah hasilkali kedua batas bawah. Contoh dan Penjelasan 5). ( ) x X Y Nilai terkecil yang bisa dicapai Nilai terbesar yang bisa dicapai Formula umum: Kedua interval adalah interval negatif. Batas bawah interval hasilkali adalah hasilkali kedua batas atas. Batas bawah interval hasilkali adalah hasilkali kedua batas bawah.
Y X Contoh dan Penjelasan 6). ( ) Formula umum: ( ) Y X Nilai terkecil yang bisa dicapai Nilai terbesar yang bisa dicapai Formula umum: Karena salah satu interval adalah interval negatif dan yang lain interval positif, maka batas bawah interval hasilkali adalah hasilkali batas bawah interval negatif dan batas atas interval positif. Batas atasnya adalah kasilkali batas atas interval negatif dan batas bawah interval positif
Y X Contoh dan Penjelasan 7). ( ) Formula umum: ( ) Y X Nilai terbesar yang bisa dicapai Nilai terkecil yang bisa dicapai Formula umum: Salah satu interval mengandung nol dan memiliki batas bawah negatif. Oleh karena itu batas bawah interval hasilkali adalah batas bawah interval yang mengandung nol dan batas atas interval yang lain (yang positif). Batas atas interval hasilkali adalah hasil kali dari kedua batas atas karena kedua batas atas tersebut positif.
Contoh dan Penjelasan ( ) Y X 8). Formula umum: ( ) Y X 8). Nilai terkecil yang bisa dicapai Nilai terbesar yang bisa dicapai Formula umum: Salah satu interval adalah interval negatif sedangkan interval yang lain mengandung nol. Batas bawah interval hasilkali adalah hasil kali batas bawah interval negatif dan batas atas (positif) interval yang mengandung nol. Batas atasnya adalah hasilkali batas bawah interval negatif dan batas bawah (yang bernilai negatif) dari interval yang mengandung nol.
Kedua interval mengandung nol. Pada formulasi umum Contoh dan Penjelasan 9). ( ) Y X Kedua interval mengandung nol. Pada formulasi umum Akan bernilai negatif sehingga tak mungkin menjadi batas maksimum Akan bernilai positif sehingga tak mungkin menjadi batas minimum
Kebalikan Interval Apabila X adalah satu interval yang tidak mengandung 0, kebalikan dari X didefinisikan sebagai Dengan memperhatikan batas atas dan batas bawahnya, maka Contoh: X = [2, 10] 1/X = [0.1, 0.5] Jika ditinjau keadaan umum dimana interval X mengandung 0, kebalikan dari X akan terdiri dari dua interval terpisah satu sama lain. Keadaan demikian ini belum akan kita lihat.
Pembagian Interval X/Y = [4, 10] [0.1, 0.5] = [0.4, 5] Pembagian interval X oleh interval Y adalah perkalian antara X dengan kebalikan Y. Contoh: X = [4, 10], Y = [2, 10] X/Y = [4, 10] [0.1, 0.5] = [0.4, 5]
Sifat-Sifat Aritmatika Interval
Akan tetapi muncul juga perbedaan-perbedaan yang sangat menyolok. Jika interval-interval mengalami degenerasi, maka operasi-operasi aritmatika interval berubah menjadi aritmatika bilangan biasa yang sudah kita kenal. Kita boleh mengharap bahwa sifat-sifat aritmatika bilangan biasa yang kita kenal, muncul juga dalam aritmatika interval. Ternyata memang demikian. Akan tetapi muncul juga perbedaan-perbedaan yang sangat menyolok.
Operasi penjumlahan dan perkalian interval telah didefinisikan sebagai Penjumlahan bersifat asosiatif dan perkalian bersifat komutatif.
Nol dan Satu adalah interval yang mengalami degenerasi: yang dituliskan sebagai 0 dan 1 Jadi X + 0 = 0 + X dan 1·X = X·1 Perbedaan menyolok dengan aritmatika biasa adalah bahwa dalam aritmatika interval: X X 0 dan X / X 1 jika w(X) > 0
Sifat distributif dalam aritmatika interval adalah: X (Y + Z) = XY + XZ Sifat distributif ini tetap berlaku dalam kasus-kasus khusus berikut: Jika Y dan Z adalah interval simetris; Jika YZ > 0 Namun sifat distributif tidak senantiasa berlaku: [0, 1] (1-1) = 0 tetapi [0, 1] [0, 1] = [1, 1]
Kapita Selekta Matematika Sudaryatno Sudirham