Regresi linier sederhana

Slides:



Advertisements
Presentasi serupa
Pertemuan II SEBARAN PEUBAH ACAK
Advertisements

Chapter 12 Simple Linear Regression
Translasi Rotasi Refleksi Dilatasi
Pengantar Kinetika Kimia II: Orde Reaksi & Waktu Paruh
Menempatkan Pointer Q 6.3 & 7.3 NESTED LOOP.
Tugas Praktikum 1 Dani Firdaus  1,12,23,34 Amanda  2,13,24,35 Dede  3,14,25,36 Gregorius  4,15,26,37 Mirza  5,16,27,38 M. Ari  6,17,28,39 Mughni.
Selamat Datang Dalam Kuliah Terbuka Ini
1suhardjono waktu 1Keterkatian PKB dengan Karya Inovatif, Macam dan Angka Kredit Karya Inovatif (buku 4 halaman ) 3 Jp 3Menilai Karya Inovatif.
Menentukan komposisi dua fungsi dan invers suatu fungsi
Korelasi dan Regresi Ganda
KETENTUAN SOAL - Untuk soal no. 1 s/d 15, pilihlah salah satu
Bahan Kuliah Statistika Terapan
ANALISIS REGRESI (REGRESSION ANALYSIS)
MATRIKS Trihastuti Agustinah.
Sebaran Bentuk Kuadrat
BAB 13 PENGUJIAN HIPOTESA.
4. PROSES POISSON Prostok-4-firda.
LIMIT FUNGSI LIMIT FUNGSI ALJABAR.
Selamat Datang Dalam Kuliah Terbuka Ini
UJI PERBEDAAN (Differences analysis)
Luas Daerah ( Integral ).
ANALISIS JALUR ( PATH ANALYSIS ).
REGRESI LINIER SEDERHANA
Fungsi Invers, Eksponensial, Logaritma, dan Trigonometri
Statistika 2 Regresi dan Korelasi Linier Topik Bahasan:
Kompleksitas Waktu Asimptotik
SATUAN ACARA PERKULIAHAN
Wahyu Widhiarso Fakultas Psikologi UGM
Dasar probabilitas.
Erni Tri Astuti Sekolah Tinggi Ilmu Statistik
Korelasi dan Regresi Ganda
WISNU HENDRO MARTONO,M.Sc
ANALISIS KORELASI DAN REGRESI LINIER
Regresi linier sederhana
Aplikasi Program Analisis Data (SPSS)
Regresi linier sederhana
Analisis Data dengan SPSS
Asumsi Model Regresi Pemeriksaan Pola Sisaan (Residual) Kutner, Ch. 3
ANALISIS EKSPLORASI DATA
1 Pertemuan 25 Matakuliah: I0044 / Analisis Eksplorasi Data Tahun: 2007 Versi: V1 / R1 Analisis Regresi Ganda (I) : Pendugaan Model Regresi.
Simple Regression ©. Null Hypothesis The analysis of business and economic processes makes extensive use of relationships between variables.
MULTIPLE REGRESSION ANALYSIS THE THREE VARIABLE MODEL: NOTATION AND ASSUMPTION 08/06/2015Ika Barokah S.
REGRESI LINIER SEDERHANA (SIMPLE LINEAR REGRESSION)
Analisis Regresi. ANALISIS REGRESI Melihat ‘pengaruh’ variable bebas/independet variabel/ thd variable terikat/dependent variabel. Berdasarkan jumlah.
REGRESI LINIER BERGANDA (MULTIPLE LINEAR REGRESSION)
REGRESI LINIER SEDERHANA
Analisis Korelasi dan Regresi linier
Mata kuliah : A Statistik Ekonomi
Bab 4 Estimasi Permintaan
ANALISIS VARIANS TUJUAN
Regresi Linier (Linear Regression)
Mengukur Kualitas ‘the straight line Fit’ dan Estimasi s2, serta interpretasi slope dan intercept Tujuan Menjelaskan teknik pengukuran kualitas ‘the straight.
Ekonomi Manajerial dalam Perekonomian Global
Praktikum Metode Regresi MODUL 1
PERTEMUAN KE-14 STATISTIK DESKRIPTIF
MUHAMMAD HAJARUL ASWAD
Pertemuan Kesembilan Analisa Data
Pertemuan Kesepuluh Data Analysis
REGRESI LINIER BERGANDA (MULTIPLE LINEAR REGRESSION)
REGRESI LINIER SEDERHANA (SIMPLE LINEAR REGRESSION)
Analisis Regresi.
Bab 4 : Estimasi Permintaan
Analisis Korelasi dan Regresi Berganda Manajemen Informasi Kesehatan
Uji Korelasi dan Regresi
Mengukur Kualitas ‘the straight line Fit’ dan Estimasi s2, serta interpretasi slope dan intercept Tujuan Menjelaskan teknik pengukuran kualitas ‘the straight.
Pasca Sarjana Unikom Model Regresi Pasca Sarjana Unikom
Pasca Sarjana Unikom Model Regresi Pasca Sarjana Unikom
Ekonomi Manajerial dalam Perekonomian Global
REGRESI LINIER SEDERHANA (SIMPLE LINEAR REGRESSION)
Analisis Regresi Regresi Linear Sederhana
Transcript presentasi:

Regresi linier sederhana Kuliah #2 analisis regresi Usman Bustaman @akbardarmawan/3SE1

Apa itu? Regresi Linier Sederhana @akbardarmawan/3SE1

Regresi (Buku 5: Kutner, Et All P. 5) Sir Francis Galton (latter part of the 19th century): studied the relation between heights of parents and children noted that the heights of children of both tall and short parents appeared to "revert" or "regress" to the mean of the group. developed a mathematical description of this regression tendency, today's regression models (to describe statistical relations between variables). @akbardarmawan/3SE1

linier Masih ingat Y=mX+B? Slope? Konstanta? m B Y X @akbardarmawan/3SE1

Linier lebih lanjut… Linier dalam paramater… Persamaan Linier orde 1: Dst… (orde  pangkat tertinggi yang terdapat pada variabel bebasnya) @akbardarmawan/3SE1

sederhana Relasi antar 2 variabel: 1 variabel bebas (independent variable) 1 variabel tak bebas (dependent variable) Y=mX+B? Mana variabel bebas? Mana variabel tak bebas? Y m X B @akbardarmawan/3SE1

Bagaimana membangun Model Regresi Linier Sederhana Bagaimana membangun Model Regresi Linier Sederhana? Analisis/ Comment Grafik-2 Berikut: @akbardarmawan/3SE1

Analisis/Comment Grafik-2 Berikut: D @akbardarmawan/3SE1

Fungsi rata-2 (Mean Function) If you know something about X, this knowledge helps you predict something about Y. @akbardarmawan/3SE1

Prediksi terbaik…  Bagaimana mengestimasi parameter dengan cara terbaik… @akbardarmawan/3SE1

Regresi Linier @akbardarmawan/3SE1

Regresi Linier ˆ Y= 𝛽 0 + 𝛽 1 𝑋 Y = b0 + b1Xi Populasi Koefisien regresi Sampel ˆ Y = b0 + b1Xi @akbardarmawan/3SE1

Regresi Linier  Model Y X b b + = e Y X Yi Xi ? (the actual value of Yi) Y X b b 0 1 + = Yi i e Xi X @akbardarmawan/3SE1

Regresi terbaik = minimisasi error Semua residual harus nol Minimum Jumlah residual Minimum jumlah absolut residual Minimum versi Tshebysheff Minimum jumlah kuadrat residual  OLS @akbardarmawan/3SE1

Ordinary Least Square (OLS) @akbardarmawan/3SE1

Assumptions Linear regression assumes that… 1. The relationship between X and Y is linear 2. Y is distributed normally at each value of X 3. The variance of Y at every value of X is the same (homogeneity of variances) 4. The observations are independent @akbardarmawan/3SE1

Asumsi lebih lanjut… Alexander Von Eye & Christof Schuster (1998) Regression Analysis for Social Sciences @akbardarmawan/3SE1

Asumsi lebih lanjut… Alexander Von Eye & Christof Schuster (1998) Regression Analysis for Social Sciences @akbardarmawan/3SE1

Proses estimasi parameter (Drapper & Smith) @akbardarmawan/3SE1

Koefisien regresi @akbardarmawan/3SE1

Simbol-2 (Weisberg p. 22) @akbardarmawan/3SE1

Makna koefisien regresi x = 0 ? b0 ≈ ….. b1 ≈ ….. - Tinggi vs berat badan - Nilai math vs stat - Lama sekolah vs pendptn - Lama training vs jml produksi ……. @akbardarmawan/3SE1

Regression Picture C B SSE SSR Variability due to x (regression) yi   x y A2 B2 C2 SST Total squared distance of observations from naïve mean of y  Total variation SSR Distance from regression line to naïve mean of y  Variability due to x (regression)   SSE Variance around the regression line  Additional variability not explained by x—what least squares method aims to minimize @akbardarmawan/3SE1

explained by predictors SST (Sum Square TOTAL) Variance to be explained by predictors (SST) Y @akbardarmawan/3SE1

SSE & SSR (SSR) (SSE) X Y Variance explained by X Variance NOT @akbardarmawan/3SE1

explained by predictors SST = SSR + SSE Variance to be explained by predictors (SST) X Variance explained by X (SSR) Y Variance NOT explained by X (SSE) @akbardarmawan/3SE1

Coefficient of Determination Koefisien Determinasi Coefficient of Determination to judge the adequacy of the regression model Maknanya: …. ? @akbardarmawan/3SE1

Koefisien Determinasi @akbardarmawan/3SE1

Salah paham ttg r2 R2 tinggi  prediksi semakin baik …. R2 tinggi  model regresi cocok dgn datanya … R2 rendah (mendekati nol)  tidak ada hubungan antara variabel X dan Y … @akbardarmawan/3SE1

measures the strength of the linear association between two variables. Korelasi Buktikan…! Pearson Correlation…? Correlation measures the strength of the linear association between two variables. @akbardarmawan/3SE1

Korelasi & Regresi 𝑺 𝒀 = 𝑺 𝒀𝒀 𝑺 𝑿 = 𝑺 𝑿𝑿 @akbardarmawan/3SE1

Assumptions Linear regression assumes that… 1. The relationship between X and Y is linear 2. Y is distributed normally at each value of X 3. The variance of Y at every value of X is the same (homogeneity of variances) 4. The observations are independent @akbardarmawan/3SE1

Uji parameter RLS Linear regression assumes that… 1. The relationship between X and Y is linear 2. Y is distributed normally at each value of X 3. The variance of Y at every value of X is the same (homogeneity of variances) 4. The observations are independent @akbardarmawan/3SE1

Distribusi sampling b1 @akbardarmawan/3SE1

b1 ~ Normal  ~ Normal @akbardarmawan/3SE1

Uji koefisien regresi @akbardarmawan/3SE1

Uji koefisien regresi @akbardarmawan/3SE1

Confidence Interval for b1 Selang Kepercayaan koefisien regresi Confidence Interval for b1 @akbardarmawan/3SE1

Uji koefisien regresi @akbardarmawan/3SE1

Confidence Interval for the intercept Selang Kepercayaan koefisien regresi Confidence Interval for the intercept @akbardarmawan/3SE1