Bujur Sangkar Latin (RBL)

Slides:



Advertisements
Presentasi serupa
Perancangan Percobaan
Advertisements

Rancangan Acak Lengkap (Completely Randomized Design)
Perancangan Percobaan
RBSL (Rancangan Bujur Sangkar Latin)
Rancangan Acak Lengkap (Completely Randomized Design)
Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor
Common Effect Model.
Rancangan Acak Kelompok
Validitas & Reliabilitas
Korelasi Linier KUSWANTO Korelasi Keeratan hubungan antara 2 variabel yang saling bebas Walaupun dilambangkan dengan X dan Y namun keduanya diasumsikan.
(Rancangan Petak Terbagi)
Research Design (Cont). Jenis Perancangan Riset Jenis perancangan mana yg akan digunakan ? Peneliti perlu memikirkan tentang apa yang mereka inginkan.
Percobaan satu faktor (single factor exp.)
ANALYSIS OF VARIANCE (ANOVA)
BAB 1 ANALISIS VARIANSI / KERAGAMAN Analysis of Variance ( ANOVA )
The steps to work with Power Point click Start> All Programs> Microsoft Office> Microsoft Office PowerPoint2007 klik Start>All Programs>Microsoft.
1 Pertemuan 12 Pengkodean & Implementasi Matakuliah: T0234 / Sistem Informasi Geografis Tahun: 2005 Versi: 01/revisi 1.
What is conjunction ?? CONJUNCTION
Percobaan Berfaktor Perlakuan : kombinasi antara taraf faktor satu dengan taraf faktor yang lain Penempatan perlakuan dalam : RAL, RAK, SPLIT PLOT atau.
Masalah Transportasi II (Transportation Problem II)
Percobaan Satu Faktor-RAL
BAB 6 KOMBINATORIAL DAN PELUANG DISKRIT. KOMBINATORIAL (COMBINATORIC) : ADALAH CABANG MATEMATIKA YANG MEMPELAJARI PENGATURAN OBJEK- OBJEK. ADALAH CABANG.
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
ANALYSIS OF VARIANCE (ANOVA) Matakuliah: KodeJ0204/Statistik Ekonomi Tahun: Tahun 2007 Versi: Revisi.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Expectation Maximization. Coin flipping experiment  Diberikan koin A dan B dengan nilai bias A dan B yang belum diketahui  Koin A akan memunculkan head.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 11-1 Chapter 11 Analysis of Variance Basic Business Statistics 10 th Edition.
VII. RAK FAKTORIAL Percobaan RAK pola faktorial adalah penelitian dengan rancangan dasar RAK dan faktor perlakuan labih dari atau sama dengan 2. Contoh.
Jartel, Sukiswo Sukiswo
Rancangan Acak Kelompok
Rancangan Acak Lengkap (RAL) (Completely Randomized Design)
RANCANGAN BUJUR SANGKAR LATIN (RBSL) (LATIN SQUARE DESIGN)
RANCANGAN BUJUR SANGKAR LATIN (RBSL) (LATIN SQUARE DESIGN)
DAFTAR TOPIK SKRIPSI Cecilia E. Nugraheni
ANALISI SVARIANS (ANALISIS RAGAM)
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Pengujian Hipotesis (I) Pertemuan 11
Rancangan Acak Lengkap (RAL) (Completely Randomized Design)
Rancangan Bujur Sangkar Latin
RANCANGAN BUJUR SANGKAR LATIN (RBL)
Rancangan Cross-Over Dalam kondisi-kondisi tertentu pemberian perlakuan dilakukan secara serial dimana setiap objek diterapkan seluruh perlakuan pada periode.
Rancangan Bujur Sangkar Latin (RBSL)
Review Operasi Matriks
the formula for the standard deviation:
Rancangan Bujur Sangkar Latin (Latin Square Design)
Kuis 1 April 2017 Pilih Suatu Proyek IT
Pertemuan 21 Penerapan model not full rank
Perancangan dan Analisis Percobaan
Kk ilo Associative entity.
LATIN SQUARE DESIGN DOX 6E Montgomery.
ANALYSIS OF VARIANCE (ANOVA).
Eksperimen Satu Faktor: (Disain RAL)
Master data Management
RANCANGAN ACAK LENGKAP (FULLY RANDOMIZED DESIGN, COMPLETELY RANDOMIZED DESIGN) Untuk percobaan yang mempunyai media atau tempat percobaan yang seragam.
Percobaan satu faktor (single factor exp.)
RANCANGAN BUJUR SANGKAR LATIN
RANCANGAN ACAK LENGKAP
How Can I Be A Driver of The Month as I Am Working for Uber?
Don’t Forget to Avail the Timely Offers with Uber
Takes Rides for Never Ending Fun pacehire.co.uk. It’s still Time to Make Fun Before the Holidays pacehire.co.uk.
Operasi Matriks Dani Suandi, M.Si..
THE INFORMATION ABOUT HEALTH INSURANCE IN AUSTRALIA.
In this article, you can learn about how to synchronize AOL Mail with third-party applications like Gmail, Outlook, and Window Live Mail, Thunderbird.
Right, indonesia is a wonderful country who rich in power energy not only in term of number but also diversity. Energy needs in indonesia are increasingly.
GROUP 8 Martha Prasetya Ningrum ( ) Bimantara Wicaksana ( ) DISCOURSE AND CULTURE.
Draw a picture that shows where the knife, fork, spoon, and napkin are placed in a table setting.
Wednesday/ September,  There are lots of problems with trade ◦ There may be some ways that some governments can make things better by intervening.
Transcript presentasi:

Bujur Sangkar Latin (RBL) Rancangan Bujur Sangkar Latin (RBL) (Latin Square Design) Kuswanto-2012

Rancangan Bujur Sangkar Latin: RBL adalah pengembangan dari RAK. Dimana RBL diterapkan untuk lahan yang mempunyai 2 arah gradien penyebab heterogenitas Sangat tepat untuk penelitian dengan gradien kemiringan dan kelembaban tanah

Imagine a field with a slope and fertility gradient: B C A D E B C D A E A B C D E

Imagine a field with a slope and fertility gradient: B C A D E B C D A E A B C D E

Imagine a field with a slope and fertility gradient: B C A D E B C D A E A B C D E

We refer to Latin Squares as 3x3 or 5x5 etc. A Latin square requires the same number of replications as we have treatments. Degrees of freedom are calculated as follows (6x6 example): Total = (6x6) – 1 = 35 Rows = r -1 = 6 – 1 = 5 Columns = c – 1 = 6 – 1 = 5 Treatments = k – 1 = 6 – 1 = 5 Error = 35 – 5 – 5 – 5 = 20 or (r-1)(c-1) – (k – 1) = (5x5) – 5 = 20

Example: We are interested in the effect of 4 fertilizers (A,B,C,D) on corn yield. We have seed which was stored under four conditions and we have four fields in which we are conducting the experiment. stor1 stor2 stor3 stor4 Field1 B D A C Field2 Field3 Field4

stor1 stor2 stor3 stor4 fld1 B D A C fld2 fld3 fld4 Each treatment appears in each row and column once. Treatments are assigned randomly, but as each is assigned, constraints are placed on the next treatment to be assigned.

How to randomizing?? 1 2 3 4 5 A B C D E 1 2 3 4 5

Then randomize the rows: 1 2 3 4 5 2 B C D E A 5 4 3 1 Pay attention the row position!

Then randomize the rows: 1 2 3 4 5 2 B C D E A 5 4 3 1 Pay attention the row position!

Then Randomize columns, then randomly assign treatments to letters: 5 3 2 4 1 E C B D A 1 2 3 4 5

Then Randomize columns, then randomly assign treatments to letters: 5 3 2 4 1 E C B D A 1 2 3 4 5

The LS design is most often used with a field to account for gradients in soil, fertility, or moisture. In a greenhouse, plants on different shelves (rak) and benches (bangku) may be blocked. Latin Squares are also useful when we know (or suspect variation) of a linear nature, but do not know the direction it will take (eg bark beetle study). The Latin Square design is only useful if both rows and columns vary appreciably. If they do not, a RCBD (RAK) or Completely randomized design (RAL) would be better (more degrees of freedom in the error term for F test)

Model  Source of Variability Treatment (fixed) Row (random) How to analysis of a Latin Square: Three way model, treatment fixed effect, rows and columns are both random effects. No replication so same problem as RCB design (RAL) with experimental error. Must remove interaction from model – assume no interaction. Model  Source of Variability Treatment (fixed) Row (random) Column (random)

Example: We want to compare effect of 4 different fertilizer on yield of potatoes. B D C A

Contoh : Hasil pipilan 4 varietas jagung Lajur Baris 1 2 3 4 Jlh baris 1,64 (B) 1,21(D) 1,42(C) 1,34(A) 5,62 1,47(C) 1,18(A) 1,40(D) 1,29(B) 5,35 1,67(A) 0,71(C) 1,66(B) 1,18(D) 5,225 1,56(D) 1,65(A) 0,66(C) 5,17 Jlh lajur 6,35 4,395 6,145 4,475 21,365 Hitung jumlah perlakuan (P) dan rata-ratanya

Jumlah perlakuan dan rerata 5,855 1,464 B 5,885 1,471 C 4,270 1,068 D 5,355 1,339

Hitung JK FK = (21,365)²/16 = 28,529 JKt = {(1,640)² + …+ 0,660)² -FK = 1,4139 JKb = (5,62)² + …+ (5,170)² -FK = 0,03015 JKl = (6,350)² +…+ (4,475)² -FK = 0,8273 JKp = (5,855)² + …+ (5,355)² -FK = 0,4268 JKe = JKt-JKb-JKl-JKp = 0,1295 Masukkan ke tabel ANOVA 

Tabel Anova Kesimpulan : Perlakuan  berbeda nyata SK DB JK KT F hit Ft5% Ft1% Baris 3 0,03015 0,01005 Lajur 0,8273 0,2757 Perlakuan 0,4268 0,1422 6,59* 4,76 9,78 Galat 6 0,1295 0,0215 Total 15 1,4139 Kesimpulan : Perlakuan  berbeda nyata

Interpretasi F hitung perlakuan berbeda nyata berarti 4 perlakuan tersebut secara statistik berbeda nyata Perbedaan antar perlakuan menyebabkan keragaman, dan keragaman yang disebabkan oleh perlakuan lebih besar daripada keragaman yang disebabkan oleh faktor sesatan percobaan (faktor lain)