Kuliah Sistem Fuzzy Pertemuan 13 “Algoritma Genetika” (lanjutan)

Slides:



Advertisements
Presentasi serupa
Penyelesaian TSP dengan Algoritma Genetik
Advertisements

ALGORITMA GENETIKA.
Algoritma Genetika Kelompok 2 Ferry sandi cristian ( )
Kuliah Sistem Fuzzy Pertemuan 11 Evaluasi Pekerjaan Di Lingkungan Fuzzy.
GRAF TIDAK BERARAH PART 2 Dosen : Ahmad Apandi, ST
ALGORITMA GENETIKA.
Algoritma Genetika.
Genetic Algoritms.
ALGORITMA GENETIKA Disusun Oleh : Anjas Purnomo ( )
Yufis Azhar – Teknik Informatika - UMM
Steepest Descent (Ascent) untuk Kasus Min (Maks)
ALGORITMA GENETIKA.
KONSEP DASAR ALJABAR LINEAR
Informatics Theory & Programming (ITP) Informatics Eng. Dept. – IT Telkom.
Informatics Theory & Programming (ITP) Informatics Eng. Dept. – IT Telkom.
Pertemuan 23 BRANCH AND BOUND (1)
Pertemuan 24 BRANCH AND BOUND (2)
Fuzzy Integer Transportation Pertemuan 14 :
Dr. Rahma Fitriani, S.Si., M.Sc
Pertemuan 16 DYNAMIC PROGRAMMING : TRAVELING SALESMAN PROBLEM (TSP)
Soft Computing - Introduction
METODE PENCARIAN dan PELACAKAN
ALGORITMA GENETIKA Pertemuan 12.
Kuliah Sistem Fuzzy Pertemuan 6
Kuliah Sistem Fuzzy Pertemuan 12 “Algoritma Genetika”
SISTEM CERDAS Jaringan Syaraf Tiruan
ALGORITMA GENETIKA. KELOMPOK 6 CINDY RAHAYU ( ) MIA RAHMANIA ( ) M. ISKANDAR YAHYA ( ) Teknik Informatika 5A UIN.
Studi Kasus Dr. Suyanto, S.T., M.Sc. HP/WA:
Perbandingan Algoritma Brute Force dan Depth First Search (DFS) dalam Kasus Travelling Salesman Problem (TSP) Ervin Yohannes ( )
Matakuliah Teori Bilangan
Dasar-Dasar Algoritma Genetika
Metode Pencarian/Pelacakan
Optimasi Masalah Kontinu
Bahan Kuliah IF2211 Strategi Algoritma
Pencarian Simulated Annealing
Pencarian Simulated Annealing
Graf Berlabel Graf Euler Graf Hamilton
Greedy Pertemuan 7.
Evolutionary Algorithms (EAs)
ALGORITMA GENETIKA.
Pertemuan 13 ALGORITMA GENETIKA
MATERI PERKULIAHAN ANALISIS ALGORITMA
Oleh : Yusuf Nurrachman, ST, MMSI
Pertemuan 26 Review Materi Kuliah dan Presentasi Tugas Akhir
MATERI PERKULIAHAN ANALISIS ALGORITMA
GENETICS ALGORITHM Nelly Indriani W. S.Si., M.T KECERDASAN BUATAN.
Pertemuan 26 PRAKTEK ANALISIS ALGORITMA
Pertemuan 8 Review Berbagai Struktur Data Lanjutan …..
Pertemuan 14 Algoritma Genetika.
Artificial Intelligence (AI)
SITI ROKHANI, APLIKASI TRAVELLING SALESMAN PROBLEM (TSP) DALAM MENENTUKAN RUTE TERPENDEK PADA PENDISTRIBUSIAN JENANG DI KOTA KUDUS (STUDI KASUS.
Kuliah Sistem Fuzzy Pertemuan 10 “Fuzzy Multiobjective Optimization”
ALGORITMA GENETIKA.
Informed (Heuristic) Search
Pertemuan 13 Algoritma Genetika.
PENGANTAR MODEL SIMULASI
Algoritma & Struktur Data
Reviewer : Susanti Hoerunisa/
Percabangan dan Perulangan
ALGORITMA GENETIKA.
GENETIKA POPULASI.
Algoritma Genetika.
Pertemuan 15 ALGORITMA GENETIKA
Relasi Matematika Diskrit RELASI.
SILABUS Mata Kuliah Teknologi Perkantoran
SILABUS Mata Kuliah Teknologi Perkantoran
FUNGSI PENERIMAAN TOTAL
Algoritma Genetika. Melakukan Optimasi Fitness Contoh Fungsi Fitnes Y = - (x 2 - 1) GA akan melakukan optimasi terhadap fungsi tersebut.
Prinsip-prinsip Kesehatan dan Keselamatan Kerja.
1. Prinsip-prinsip Kesehatan dan Keselamatan Kerja.
Transcript presentasi:

Kuliah Sistem Fuzzy Pertemuan 13 “Algoritma Genetika” (lanjutan)

Studi Kasus Algoritma Genetika Optimasi Fungsi Traveling Salesman Problem Pelatihan JST Membangun Struktur JST

Optimasi Fungsi Contoh Permasalahan Optimasi Jika diketahui α = 0.05 dan β = 25, berapakah nilai maksimum fungsi Ψ di bawah ini ? Fungsi Ψ bernilai maksimum 1 untuk Selesaikan masalah ini dengan menggunakan Algoritma Genetika Standar Gunakan bantuan program Matlab

Traveling Salesman Problem (TSP) Contoh Permasalahan TSP Pada TSP, jumlah jalur yang mungkin diperoleh dengan menggunakan rumus Permutasi. n = jumlah seluruh kota, dan k = jumlah kota yang terseleksi.

Terdapat dua jenis TSP Asimetris, dan Simetris Asimetris, dengan ketentuan : - Biaya dari kota 1 ke kota 2 ≠ biaya dari kota 2 ke kota 1 - Jumlah jalur yang mungkin merupakan permutasi jumlah kota dibagi jumlah kota, mis. 10 kota

Terdapat dua jenis TSP (lanjutan) Simetris, dengan ketentuan : - Biaya dari kota 1 ke kota 2 = biaya dari kota 2 ke kota 1 - Jumlah jalur yang mungkin merupakan permutasi jumlah kota dibagi dengan 2 x jumlah kota

Misalkan 10 Kota yang harus disinggahi (koordinat 2 dimensi) 3 7 9 2 6 4 10 1 5 8

Implementasi TSP dengan MATLAB Dalam Implementasi TSP dengan menggu-nakan Matlab perlu memperhatikan kompo-nen-komponen Algoritma Genetik, yaitu Skema Pengkodean Nilai Fitness Linear Fitness Ranking Pindah Silang Mutasi

Hasil perhitungan urutan 10 ota yang harus disinggahi (koordinat 2 dimensi) 3 7 9 2 6 4 10 1 8 5 Jalur Terbaik

Sampai Jumpa di Ujian Akhir Semester Selamat Belajar, Semoga Sukses